Kim Ju-Hyun, Hwang Deok-Kyu, Moon Ju-Yeon, Lee Yongnam, Yoo Ji Seok, Shin Dae Hee, Lee Hye Suk
Drug Metabolism & Bioanalysis Laboratory, College of Pharmacy, The Catholic University of Korea, Bucheon 14462, Korea.
Central R&D Institute, YUNGJIN PHARM. CO., LTD., Suwon 16229, Korea.
Molecules. 2017 Apr 22;22(4):670. doi: 10.3390/molecules22040670.
Verproside, an active iridoid glycoside component of Veronica species, such as var. and , possesses anti-asthma, anti-inflammatory, anti-nociceptive, antioxidant, and cytostatic activities. Verproside is metabolized into nine metabolites in human hepatocytes: verproside glucuronides (, ) via glucuronidation, verproside sulfate () via sulfation, picroside II () and isovanilloylcatalpol () via -methylation, glucuronide () and sulfate () via further glucuronidation and sulfation of , and glucuronide () and sulfate () via further glucuronidation and sulfation of . Drug-metabolizing enzymes responsible for verproside metabolism, including sulfotransferase (SULT) and UDP-glucuronosyltransferase (UGT), were characterized. The formation of verproside glucuronides (, ), isovanilloylcatalpol glucuronide (), and picroside II glucuronide () was catalyzed by commonly expressed UGT1A1 and UGT1A9 and gastrointestinal-specific UGT1A7, UGT1A8, and UGT1A10, consistent with the higher intrinsic clearance values for the formation of , , , and in human intestinal microsomes compared with those in liver microsomes. The formation of verproside sulfate () and sulfate () from verproside and isovanilloylcatalpol (), respectively, was catalyzed by SULT1A1. Metabolism of picroside II () into sulfate () was catalyzed by SULT1A1, SULT1E1, SULT1A2, SULT1A3, and SULT1C4. Based on these results, the pharmacokinetics of verproside may be affected by the co-administration of relevant UGT and SULT inhibitors or inducers.
马鞭草苷是婆婆纳属植物(如[具体变种1]和[具体变种2])中的一种活性环烯醚萜苷成分,具有抗哮喘、抗炎、抗伤害感受、抗氧化和抑制细胞生长的活性。马鞭草苷在人肝细胞中代谢为九种代谢产物:通过葡萄糖醛酸化生成马鞭草苷葡萄糖醛酸苷([具体结构1]和[具体结构2]),通过硫酸化生成马鞭草苷硫酸盐([具体结构3]),通过N-甲基化生成胡黄连苷II([具体结构4])和异香草酰梓醇([具体结构5]),通过对[具体结构3]进一步葡萄糖醛酸化和硫酸化生成[具体结构6]葡萄糖醛酸苷([具体结构7])和[具体结构6]硫酸盐([具体结构8]),以及通过对[具体结构5]进一步葡萄糖醛酸化和硫酸化生成[具体结构9]葡萄糖醛酸苷([具体结构10])和[具体结构9]硫酸盐([具体结构11])。对负责马鞭草苷代谢的药物代谢酶进行了表征,包括磺基转移酶(SULT)和尿苷二磷酸葡萄糖醛酸基转移酶(UGT)。常见表达的UGT1A1和UGT1A9以及胃肠道特异性的UGT1A7、UGT1A8和UGT1A10催化了马鞭草苷葡萄糖醛酸苷([具体结构1]、[具体结构2])、异香草酰梓醇葡萄糖醛酸苷([具体结构7])和胡黄连苷II葡萄糖醛酸苷([具体结构10])的形成,这与在人肠微粒体中生成[具体结构1]、[具体结构2]、[具体结构7]和[具体结构10]的内在清除率值高于肝微粒体中的值一致。SULT1A1分别催化从马鞭草苷和异香草酰梓醇([具体结构5])生成马鞭草苷硫酸盐([具体结构3])和[具体结构5]硫酸盐([具体结构8])。SULT1A1、SULT1E1、SULT1A2、SULT1A3和SULT1C4催化胡黄连苷II([具体结构4])代谢为[具体结构4]硫酸盐([具体结构11])。基于这些结果,马鞭草苷的药代动力学可能会受到相关UGT和SULT抑制剂或诱导剂联合给药的影响。