Department of Chemistry, University of Wisconsin , Madison, Wisconsin 53706, United States.
J Phys Chem B. 2017 May 18;121(19):5048-5057. doi: 10.1021/acs.jpcb.7b02551. Epub 2017 May 4.
Bilayers composed of lipid or surfactant molecules are central to biological membranes and lamellar lyotropic liquid crystalline (LLC) phases. Common to these systems are phases that exhibit either ordered or disordered packing of the hydrophobic tails. In this work, we study the impact of surfactant ordering, i.e., disordered L and ordered L LLC phases, on the dynamics of water and sodium ions in the lamellar phases of dicarboxylate gemini surfactants. We study the different phases at identical hydration levels by changing the length of the hydrophobic tails; surfactants with shorter tails form L phases and those with longer tails form L phases. We find that the L phases exhibit lower density and greater compressibility than the L phases, with a hydration-dependent headgroup surface area. These structural differences significantly affect the relative dynamic properties of the phases, primarily the mobility of the surfactant molecules tangential to the bilayer surface, as well as the rates of water and ion diffusion. We find ∼20-50% faster water diffusion in the L phases compared to the L phases, with the differences most pronounced at low hydration. This coupling between water dynamics and surfactant mobility is verified using additional simulations in which the surfactant tails are frozen. Our study indicates that gemini surfactant LLCs provide an important prototypical system for characterizing properties shared with more complex biological lipid membranes.
双层膜由脂质或表面活性剂分子组成,是生物膜和层状溶致液晶(LLC)相的核心。这些系统的共同特点是疏水尾部存在有序或无序堆积的相。在这项工作中,我们研究了表面活性剂有序性(即无序 L 和有序 L LLC 相)对二羧酸双子表面活性剂层状相中水分子和钠离子动力学的影响。我们通过改变疏水尾部的长度在相同水合水平下研究不同的相;短疏水尾部的表面活性剂形成 L 相,长疏水尾部的表面活性剂形成 L 相。我们发现 L 相的密度和压缩性比 L 相低,且头部基团的表面积随水合作用而变化。这些结构差异显著影响相的相对动态特性,主要是双层表面切线方向的表面活性剂分子的迁移率,以及水和离子的扩散速率。与 L 相相比,我们发现 L 相中的水扩散速度快约 20-50%,在低水合时差异最为明显。通过对表面活性剂尾部冻结的额外模拟验证了水动力学和表面活性剂迁移率之间的这种耦合。我们的研究表明,双子表面活性剂 LLC 为具有更复杂生物脂质膜特性的系统提供了一个重要的原型系统。