Institute for Combustion Science and Environmental Technology, Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101, United States of America.
Nanotechnology. 2017 Jun 9;28(23):235401. doi: 10.1088/1361-6528/aa6f89.
We developed a simple and controlled method to synthesize FeCoO@MnO core-sheath nanoarchitecture (CSN) grown on Ni foam. Ultrathin FeCoO nanoflakes with an average thickness of 10 nm served as the scaffold to deposit the MnO nanosheets. The MnO nanosheets were able to vertically grow on FeCoO nanoflakes to form a sheath via a hydrothermal reaction. The nanocomposites' thickness could be tailored from 80 nm-550 nm by changing the reaction times. Electrochemical measurements demonstrated that FeCoO@MnO CSN with an optimal thickness of about 400 nm achieved an areal capacitance of 3.077 F cm at 2 mA cm, which is much higher than individual FeCoO nanoflakes (0.295 F cm) and MnO nanosheets (1.065 F cm). An aqueous asymmetric supercapacitor (ASC) was assembled using FeCoO@MnO CSN as its positive electrode and activated carbon (AC) as its negative electrode. The FeCoO@MnO⫽AC ASC exhibited a capacitance of 0.538 F cm at 5 mA cm with a potential window of 1.65 V, and an excellent cycling stability (99.1% retention even after 5000 cycles). Furthermore, the maximum energy density and power density of FeCoO@MnO⫽AC ASC was 0.203 mWh cm at 3.44 mW cm and 28.6 mW cm at 0.061 mWh cm, respectively.
我们开发了一种简单可控的方法来合成生长在泡沫镍上的 FeCoO@MnO 核壳纳米结构(CSN)。具有 10nm 平均厚度的超薄 FeCoO 纳米薄片作为支架,沉积 MnO 纳米片。MnO 纳米片能够通过水热反应垂直生长在 FeCoO 纳米薄片上形成壳。通过改变反应时间,纳米复合材料的厚度可以从 80nm 至 550nm 进行调整。电化学测量表明,具有最佳厚度约 400nm 的 FeCoO@MnO CSN 的面电容在 2mA cm 时达到 3.077Fcm,远高于单个 FeCoO 纳米薄片(0.295Fcm)和 MnO 纳米片(1.065Fcm)。使用 FeCoO@MnO CSN 作为正极,活性炭(AC)作为负极组装了水性不对称超级电容器(ASC)。FeCoO@MnO ⫽AC ASC 在 5mA cm 时具有 0.538Fcm 的电容,具有 1.65V 的宽电位窗口,并且具有出色的循环稳定性(即使在 5000 次循环后仍保持 99.1%的保留率)。此外,FeCoO@MnO ⫽AC ASC 的最大能量密度和功率密度分别为 0.203mWh cm 在 3.44mW cm 和 28.6mW cm 在 0.061mWh cm。