Suppr超能文献

维甲酸代谢物N-[4-甲氧基苯基]视黄酰胺(MPR)和4-氧代-N-(4-羟基苯基)视黄酰胺(3-酮基-HPR)对维甲酸分子靶点β-胡萝卜素加氧酶1、硬脂酰辅酶A去饱和酶1和二氢神经酰胺Δ4-去饱和酶1的抑制作用。

Inhibitory effects of fenretinide metabolites N-[4-methoxyphenyl]retinamide (MPR) and 4-oxo-N-(4-hydroxyphenyl)retinamide (3-keto-HPR) on fenretinide molecular targets β-carotene oxygenase 1, stearoyl-CoA desaturase 1 and dihydroceramide Δ4-desaturase 1.

作者信息

Poliakov Eugenia, Samuel William, Duncan Todd, Gutierrez Danielle B, Mata Nathan L, Redmond T Michael

机构信息

Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America.

Acucela Inc., Seattle, Washington, United States of America.

出版信息

PLoS One. 2017 Apr 27;12(4):e0176487. doi: 10.1371/journal.pone.0176487. eCollection 2017.

Abstract

The therapeutic capacity of fenretinide (N-[4-hydroxyphenyl] retinamide; 4-HPR) has been demonstrated for several conditions, including cancer, obesity, diabetes, and ocular disease. Yet, the mechanisms of action for its pleiotropic effects are still undefined. We hypothesized that investigation of two of the major physiological metabolites of fenretinide, N-[4-methoxyphenyl]retinamide (MPR) and 4-oxo-N-(4-hydroxyphenyl)retinamide (3-keto-HPR), might begin to resolve the multifaceted effects of this synthetic retinoid. We analyzed the effects of fenretinide, MPR, 3-keto-HPR, and the non-retinoid RBP4 ligand A1120, on the activity of known targets of fenretinide, stearoyl-CoA desaturase 1 (SCD1) and dihydroceramide Δ4-desaturase 1 (DES1) in ARPE-19 cells, and purified recombinant mouse beta-carotene oxygenase 1 (BCO1) in vitro. Lipids and retinoids were extracted and quantified by liquid chromatography-mass spectrometry and reversed phase HPLC, respectively. The data demonstrate that while fenretinide is an inhibitor of the activities of these three enzymes, that 3-keto-HPR is a more potent inhibitor of all three enzymes, potentially mediating most of the in vivo beneficial effects of fenretinide. However, while MPR does not affect SCD1 and DES1 activity, it is a potent specific inhibitor of BCO1. We conclude that a deeper understanding of the mechanisms of action of fenretinide and its metabolites provides new avenues for therapeutic specificity. For example, administration of 3-keto-HPR instead of fenretinide may be preferential if inhibition of SCD1 or DES1 activity is the goal (cancer), while MPR may be better for BCO1 modulation (carotenoid metabolism). Continued investigation of fenretinide metabolites in the context of fenretinide's various therapeutic uses will begin to resolve the pleotropic nature of this compound.

摘要

芬维A胺(N-[4-羟基苯基]视黄酰胺;4-HPR)已被证明对多种病症具有治疗作用,包括癌症、肥胖症、糖尿病和眼部疾病。然而,其多效性作用的机制仍不明确。我们推测,对芬维A胺的两种主要生理代谢产物N-[4-甲氧基苯基]视黄酰胺(MPR)和4-氧代-N-(4-羟基苯基)视黄酰胺(3-酮基-HPR)进行研究,可能有助于揭示这种合成类视黄醇的多方面作用。我们分析了芬维A胺、MPR、3-酮基-HPR以及非类视黄醇视黄醇结合蛋白4(RBP4)配体A1120对ARPE-19细胞中芬维A胺已知靶点硬脂酰辅酶A去饱和酶1(SCD1)和二氢神经酰胺Δ4-去饱和酶1(DES1)活性的影响,以及在体外对纯化的重组小鼠β-胡萝卜素加氧酶1(BCO1)活性的影响。分别通过液相色谱-质谱联用和反相高效液相色谱法提取并定量脂质和类视黄醇。数据表明,虽然芬维A胺是这三种酶活性的抑制剂,但3-酮基-HPR对这三种酶的抑制作用更强,可能介导了芬维A胺在体内的大部分有益作用。然而,虽然MPR不影响SCD1和DES1的活性,但它是BCO1的强效特异性抑制剂。我们得出结论,深入了解芬维A胺及其代谢产物的作用机制为治疗特异性提供了新途径。例如,如果目标是抑制SCD1或DES1活性(癌症),那么给予3-酮基-HPR而非芬维A胺可能更具优势,而MPR可能更适合调节BCO1(类胡萝卜素代谢)。在芬维A胺的各种治疗用途背景下继续研究其代谢产物,将有助于揭示该化合物的多效性本质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b02/5407626/f33e8bf2ba0b/pone.0176487.g001.jpg

相似文献

3
Liquid chromatography method for quantifying N-(4-hydroxyphenyl)retinamide and N-(4-methoxyphenyl)retinamide in tissues.
J Chromatogr B Analyt Technol Biomed Life Sci. 2004 Sep 5;808(2):125-30. doi: 10.1016/j.jchromb.2004.02.031.
4
Identification of dihydroceramide desaturase as a direct in vitro target for fenretinide.
J Biol Chem. 2011 Jul 15;286(28):24754-64. doi: 10.1074/jbc.M111.250779. Epub 2011 May 4.
6
Chemoprevention of skin carcinogenesis by phenylretinamides: retinoid receptor-independent tumor suppression.
Clin Cancer Res. 2006 Feb 1;12(3 Pt 1):969-79. doi: 10.1158/1078-0432.CCR-05-1648.

引用本文的文献

1
Advances and therapeutic opportunities in visual cycle modulation.
Prog Retin Eye Res. 2025 May;106:101360. doi: 10.1016/j.preteyeres.2025.101360. Epub 2025 Apr 23.
2
Immunometabolic effects of -carotene and vitamin A in atherogenesis.
Immunometabolism (Cobham). 2024 Nov 28;6(4):e00051. doi: 10.1097/IN9.0000000000000051. eCollection 2024 Oct.
4
Advancements on the Multifaceted Roles of Sphingolipids in Hematological Malignancies.
Int J Mol Sci. 2022 Oct 22;23(21):12745. doi: 10.3390/ijms232112745.
5
Fenretinide inhibits vitamin A formation from β-carotene and regulates carotenoid levels in mice.
Biochim Biophys Acta Mol Cell Biol Lipids. 2022 Feb;1867(2):159070. doi: 10.1016/j.bbalip.2021.159070. Epub 2021 Nov 4.
6
Druggable Sphingolipid Pathways: Experimental Models and Clinical Opportunities.
Adv Exp Med Biol. 2020;1274:101-135. doi: 10.1007/978-3-030-50621-6_6.
7
Solving the Riddle: Targeting the Imbalance of Sphingolipids in Asthma to Oppose Airway Hyperresponsiveness.
Am J Respir Cell Mol Biol. 2020 Nov;63(5):555-557. doi: 10.1165/rcmb.2020-0324ED.
8
Increasing Sphingolipid Synthesis Alleviates Airway Hyperreactivity.
Am J Respir Cell Mol Biol. 2020 Nov;63(5):690-698. doi: 10.1165/rcmb.2020-0194OC.
9
Fenretinide reduces angiogenesis by downregulating CDH5, FOXM1 and eNOS genes and suppressing microRNA-10b.
Mol Biol Rep. 2020 Mar;47(3):1649-1658. doi: 10.1007/s11033-020-05252-6. Epub 2020 Jan 10.
10

本文引用的文献

5
Fenretinide (4-HPR): a preventive chance for women at genetic and familial risk?
J Biomed Biotechnol. 2012;2012:172897. doi: 10.1155/2012/172897. Epub 2012 Mar 5.
6
Fenretinide prevents lipid-induced insulin resistance by blocking ceramide biosynthesis.
J Biol Chem. 2012 May 18;287(21):17426-17437. doi: 10.1074/jbc.M112.359950. Epub 2012 Apr 2.
9
Identification of dihydroceramide desaturase as a direct in vitro target for fenretinide.
J Biol Chem. 2011 Jul 15;286(28):24754-64. doi: 10.1074/jbc.M111.250779. Epub 2011 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验