Suppr超能文献

下泌尿生殖道神经支配发育过程中骶神经嵴的迁移途径。

Migration pathways of sacral neural crest during development of lower urogenital tract innervation.

作者信息

Wiese Carrie B, Deal Karen K, Ireland Sara J, Cantrell V Ashley, Southard-Smith E Michelle

机构信息

Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0275, United States.

Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0275, United States.

出版信息

Dev Biol. 2017 Sep 1;429(1):356-369. doi: 10.1016/j.ydbio.2017.04.011. Epub 2017 Apr 25.

Abstract

The migration and fate of cranial and vagal neural crest-derived progenitor cells (NCPCs) have been extensively studied; however, much less is known about sacral NCPCs particularly in regard to their distribution in the urogenital system. To construct a spatiotemporal map of NCPC migration pathways into the developing lower urinary tract, we utilized the Sox10-H2BVenus transgene to visualize NCPCs expressing Sox10. Our aim was to define the relationship of Sox10-expressing NCPCs relative to bladder innervation, smooth muscle differentiation, and vascularization through fetal development into adulthood. Sacral NCPC migration is a highly regimented, specifically timed process, with several potential regulatory mileposts. Neuronal differentiation occurs concomitantly with sacral NCPC migration, and neuronal cell bodies are present even before the pelvic ganglia coalesce. Sacral NCPCs reside within the pelvic ganglia anlagen through 13.5 days post coitum (dpc), after which they begin streaming into the bladder body in progressive waves. Smooth muscle differentiation and vascularization of the bladder initiate prior to innervation and appear to be independent processes. In adult bladder, the majority of Sox10+ cells express the glial marker S100β, consistent with Sox10 being a glial marker in other tissues. However, rare Sox10+ NCPCs are seen in close proximity to blood vessels and not all are S100β+, suggesting either glial heterogeneity or a potential nonglial role for Sox10+ cells along vasculature. Taken together, the developmental atlas of Sox10+ NCPC migration and distribution profile of these cells in adult bladder provided here will serve as a roadmap for future investigation in mouse models of lower urinary tract dysfunction.

摘要

颅神经嵴和迷走神经嵴衍生的祖细胞(NCPCs)的迁移和归宿已得到广泛研究;然而,关于骶神经嵴来源的NCPCs,我们了解得却少得多,尤其是它们在泌尿生殖系统中的分布情况。为构建NCPCs迁移至发育中的下尿路的时空图谱,我们利用Sox10-H2BVenus转基因来可视化表达Sox10的NCPCs。我们的目的是确定在从胎儿发育到成年的过程中,表达Sox10的NCPCs与膀胱神经支配、平滑肌分化和血管形成之间的关系。骶神经嵴来源的NCPCs迁移是一个高度有序、严格定时的过程,有几个潜在的调控里程碑。神经元分化与骶神经嵴来源的NCPCs迁移同时发生,甚至在盆腔神经节融合之前就已存在神经元细胞体。在交配后13.5天(dpc)之前,骶神经嵴来源的NCPCs存在于盆腔神经节原基内,之后它们开始以渐进波的形式流入膀胱体。膀胱的平滑肌分化和血管形成在神经支配之前就已开始,且似乎是独立的过程。在成年膀胱中,大多数Sox10+细胞表达神经胶质标志物S100β,这与Sox10在其他组织中作为神经胶质标志物一致。然而,在血管附近可见罕见的Sox10+ NCPCs,且并非所有细胞都为S100β+,这表明要么存在神经胶质异质性,要么Sox10+细胞在血管系统中具有潜在的非神经胶质作用。综上所述,本文提供的Sox10+ NCPCs迁移的发育图谱及其在成年膀胱中的分布概况将为未来下尿路功能障碍小鼠模型的研究提供路线图。

相似文献

1
Migration pathways of sacral neural crest during development of lower urogenital tract innervation.
Dev Biol. 2017 Sep 1;429(1):356-369. doi: 10.1016/j.ydbio.2017.04.011. Epub 2017 Apr 25.
2
4
Phenotypes of neural-crest-derived cells in vagal and sacral pathways.
Cell Tissue Res. 2006 Jan;323(1):11-25. doi: 10.1007/s00441-005-0047-6. Epub 2005 Aug 30.
6
Isolation and live imaging of enteric progenitors based on Sox10-Histone2BVenus transgene expression.
Genesis. 2011 Jul;49(7):599-618. doi: 10.1002/dvg.20748. Epub 2011 Jun 21.
7
Signaling pathways bridging fate determination of neural crest cells to glial lineages in the developing peripheral nervous system.
Cell Signal. 2014 Apr;26(4):673-82. doi: 10.1016/j.cellsig.2013.12.007. Epub 2013 Dec 27.
8
Fbxo9 functions downstream of Sox10 to determine neuron-glial fate choice in the dorsal root ganglia through Neurog2 destabilization.
Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):4199-4210. doi: 10.1073/pnas.1916164117. Epub 2020 Feb 6.

引用本文的文献

1
Polarity and migration of cranial and cardiac neural crest cells: underlying molecular mechanisms and disease implications.
Front Cell Dev Biol. 2025 Jan 6;12:1457506. doi: 10.3389/fcell.2024.1457506. eCollection 2024.
2
hPSC-derived sacral neural crest enables rescue in a severe model of Hirschsprung's disease.
Cell Stem Cell. 2023 Mar 2;30(3):264-282.e9. doi: 10.1016/j.stem.2023.02.003.
3
Innervation in organogenesis.
Curr Top Dev Biol. 2022;148:195-235. doi: 10.1016/bs.ctdb.2022.02.004. Epub 2022 Mar 12.
4
Shaping axial identity during human pluripotent stem cell differentiation to neural crest cells.
Biochem Soc Trans. 2022 Feb 28;50(1):499-511. doi: 10.1042/BST20211152.
6
7
Spatiotemporal mapping of sensory and motor innervation of the embryonic and postnatal mouse urinary bladder.
Dev Biol. 2021 Aug;476:18-32. doi: 10.1016/j.ydbio.2021.03.008. Epub 2021 Mar 17.
8
Sex-Determining Region Y Chromosome-Related High-Mobility-Group Box 10 in Cancer: A Potential Therapeutic Target.
Front Cell Dev Biol. 2020 Dec 3;8:564740. doi: 10.3389/fcell.2020.564740. eCollection 2020.
10
Paracervical ganglion in the female pig during prenatal development: Morphology and immunohistochemical characteristics.
Histol Histopathol. 2020 Nov;35(11):1363-1377. doi: 10.14670/HH-18-287. Epub 2020 Dec 3.

本文引用的文献

1
An illustrated anatomical ontology of the developing mouse lower urogenital tract.
Development. 2015 May 15;142(10):1893-908. doi: 10.1242/dev.117903. Epub 2015 May 12.
2
Bladder tissue engineering: a literature review.
Adv Drug Deliv Rev. 2015 Mar;82-83:31-7. doi: 10.1016/j.addr.2014.11.013. Epub 2014 Nov 14.
3
Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system.
Glia. 2015 Feb;63(2):229-41. doi: 10.1002/glia.22746. Epub 2014 Aug 26.
4
Spatiotemporal mapping of vascularization and innervation in the fetal murine intestine.
Dev Dyn. 2015 Jan;244(1):56-68. doi: 10.1002/dvdy.24178. Epub 2014 Sep 22.
6
SHP-2 deletion in postmigratory neural crest cells results in impaired cardiac sympathetic innervation.
Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):E1374-82. doi: 10.1073/pnas.1319208111. Epub 2014 Mar 24.
7
Vascularisation is not necessary for gut colonisation by enteric neural crest cells.
Dev Biol. 2014 Jan 15;385(2):220-9. doi: 10.1016/j.ydbio.2013.11.007. Epub 2013 Nov 18.
8
Neural crest origin of retinal and choroidal pericytes.
Invest Ophthalmol Vis Sci. 2013 Dec 5;54(13):7910-21. doi: 10.1167/iovs.13-12946.
9
A Uchl1-Histone2BmCherry:GFP-gpi BAC transgene for imaging neuronal progenitors.
Genesis. 2013 Dec;51(12):852-61. doi: 10.1002/dvg.22716. Epub 2013 Oct 21.
10
Urofacial syndrome: a genetic and congenital disease of aberrant urinary bladder innervation.
Pediatr Nephrol. 2014 Apr;29(4):513-8. doi: 10.1007/s00467-013-2552-2. Epub 2013 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验