Castañeda Alma D, Robinson Donald A, Stevenson Keith J, Crooks Richard M
Department of Chemistry , Center for Electrochemistry, and the Center for Nano- and Molecular Science and Technology , The University of Texas at Austin , 105 E. 24th St., Stop A5300 , Austin , TX 78712-1224 , USA . Email:
Chem Sci. 2016 Oct 1;7(10):6450-6457. doi: 10.1039/c6sc02165d. Epub 2016 Jul 1.
We report a new and general approach that will be useful for adapting the method of electrocatalytic amplification (ECA) to biosensing applications. In ECA, individual collisions of catalytic nanoparticles with a noncatalytic electrode surface lead to bursts of current. In the work described here, the current arises from catalytic electrooxidation of NH at the surface of platinum nanoparticles (PtNPs). The problem with using ECA for biosensing applications heretofore, is that it is necessary to immobilize a receptor, such as DNA (as in the case here) or an antibody on the PtNP surface. This inactivates the colliding NP, however, and leads to very small collision signatures. In the present article, we show that single-stranded DNA (ssDNA) present on the PtNP surface can be detected by selectively removing a fraction of the ssDNA using the enzyme Exonuclease I (Exo I). About half of the current associated with collisions of naked PtNPs can be recovered from fully passivated PtNPs after exposure to Exo I. Experiments carried out using both Au and Hg ultramicroelectrodes reveal some mechanistic aspects of the collision process before and after treatment of the ssDNA-modified PtNPs with Exo I.
我们报道了一种新的通用方法,该方法将有助于使电催化放大(ECA)方法适用于生物传感应用。在ECA中,催化纳米颗粒与非催化电极表面的单个碰撞会导致电流脉冲。在本文所述的工作中,电流源于铂纳米颗粒(PtNP)表面NH的催化电氧化。迄今为止,将ECA用于生物传感应用的问题在于,有必要在PtNP表面固定一种受体,例如DNA(如本文中的情况)或抗体。然而,这会使碰撞的NP失活,并导致非常小的碰撞信号。在本文中,我们表明,通过使用核酸外切酶I(Exo I)选择性去除一部分单链DNA(ssDNA),可以检测PtNP表面存在的单链DNA。在用Exo I处理后,与裸露的PtNP碰撞相关的电流中约有一半可以从完全钝化的PtNP中恢复。使用金和汞超微电极进行的实验揭示了用Exo I处理ssDNA修饰的PtNP之前和之后碰撞过程的一些机理方面。