Silva Genivaldo Gueiros Z, Lopes Fabyano A C, Edwards Robert A
Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA.
Cellular Biology Department, Universidade de Brasília (UnB), 700910-900, Brasília, DF, Brazil.
Methods Mol Biol. 2017;1611:35-44. doi: 10.1007/978-1-4939-7015-5_4.
One of the main goals in metagenomics is to identify the functional profile of a microbial community from unannotated shotgun sequencing reads. Functional annotation is important in biological research because it enables researchers to identify the abundance of functional genes of the organisms present in the sample, answering the question, "What can the organisms in the sample do?" Most currently available approaches do not scale with increasing data volumes, which is important because both the number and lengths of the reads provided by sequencing platforms keep increasing. Here, we present SUPER-FOCUS, SUbsystems Profile by databasE Reduction using FOCUS, an agile homology-based approach using a reduced reference database to report the subsystems present in metagenomic datasets and profile their abundances. SUPER-FOCUS was tested with real metagenomes, and the results show that it accurately predicts the subsystems present in the profiled microbial communities, is computationally efficient, and up to 1000 times faster than other tools. SUPER-FOCUS is freely available at http://edwards.sdsu.edu/SUPERFOCUS .
宏基因组学的主要目标之一是从未经注释的鸟枪法测序读段中识别微生物群落的功能概况。功能注释在生物学研究中很重要,因为它使研究人员能够识别样本中存在的生物体功能基因的丰度,从而回答“样本中的生物体能够做什么?”这个问题。目前大多数可用方法无法随着数据量的增加而扩展,这一点很重要,因为测序平台提供的读段数量和长度都在不断增加。在这里,我们展示了SUPER-FOCUS,即通过使用FOCUS进行数据库缩减的子系统概况分析,这是一种基于同源性的灵活方法,使用简化的参考数据库来报告宏基因组数据集中存在的子系统并分析它们的丰度。我们使用真实的宏基因组对SUPER-FOCUS进行了测试,结果表明它能够准确预测被分析微生物群落中存在的子系统,计算效率高,并且比其他工具快多达1000倍。可在http://edwards.sdsu.edu/SUPERFOCUS免费获取SUPER-FOCUS。
Methods Mol Biol. 2017
Bioinformatics. 2016-2-1
PLoS One. 2015-11-11
J Biotechnol. 2017-8-18
BMC Res Notes. 2015-9-26
BMC Bioinformatics. 2016-1-16