文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用SUPER-FOCUS对宏基因组数据进行敏捷功能分析

An Agile Functional Analysis of Metagenomic Data Using SUPER-FOCUS.

作者信息

Silva Genivaldo Gueiros Z, Lopes Fabyano A C, Edwards Robert A

机构信息

Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA.

Cellular Biology Department, Universidade de Brasília (UnB), 700910-900, Brasília, DF, Brazil.

出版信息

Methods Mol Biol. 2017;1611:35-44. doi: 10.1007/978-1-4939-7015-5_4.


DOI:10.1007/978-1-4939-7015-5_4
PMID:28451970
Abstract

One of the main goals in metagenomics is to identify the functional profile of a microbial community from unannotated shotgun sequencing reads. Functional annotation is important in biological research because it enables researchers to identify the abundance of functional genes of the organisms present in the sample, answering the question, "What can the organisms in the sample do?" Most currently available approaches do not scale with increasing data volumes, which is important because both the number and lengths of the reads provided by sequencing platforms keep increasing. Here, we present SUPER-FOCUS, SUbsystems Profile by databasE Reduction using FOCUS, an agile homology-based approach using a reduced reference database to report the subsystems present in metagenomic datasets and profile their abundances. SUPER-FOCUS was tested with real metagenomes, and the results show that it accurately predicts the subsystems present in the profiled microbial communities, is computationally efficient, and up to 1000 times faster than other tools. SUPER-FOCUS is freely available at http://edwards.sdsu.edu/SUPERFOCUS .

摘要

宏基因组学的主要目标之一是从未经注释的鸟枪法测序读段中识别微生物群落的功能概况。功能注释在生物学研究中很重要,因为它使研究人员能够识别样本中存在的生物体功能基因的丰度,从而回答“样本中的生物体能够做什么?”这个问题。目前大多数可用方法无法随着数据量的增加而扩展,这一点很重要,因为测序平台提供的读段数量和长度都在不断增加。在这里,我们展示了SUPER-FOCUS,即通过使用FOCUS进行数据库缩减的子系统概况分析,这是一种基于同源性的灵活方法,使用简化的参考数据库来报告宏基因组数据集中存在的子系统并分析它们的丰度。我们使用真实的宏基因组对SUPER-FOCUS进行了测试,结果表明它能够准确预测被分析微生物群落中存在的子系统,计算效率高,并且比其他工具快多达1000倍。可在http://edwards.sdsu.edu/SUPERFOCUS免费获取SUPER-FOCUS。

相似文献

[1]
An Agile Functional Analysis of Metagenomic Data Using SUPER-FOCUS.

Methods Mol Biol. 2017

[2]
SUPER-FOCUS: a tool for agile functional analysis of shotgun metagenomic data.

Bioinformatics. 2016-2-1

[3]
FOCUS: an alignment-free model to identify organisms in metagenomes using non-negative least squares.

PeerJ. 2014-6-5

[4]
COGNIZER: A Framework for Functional Annotation of Metagenomic Datasets.

PLoS One. 2015-11-11

[5]
MG-RAST, a Metagenomics Service for Analysis of Microbial Community Structure and Function.

Methods Mol Biol. 2016

[6]
Species classifier choice is a key consideration when analysing low-complexity food microbiome data.

Microbiome. 2018-3-20

[7]
Bioinformatics for NGS-based metagenomics and the application to biogas research.

J Biotechnol. 2017-8-18

[8]
PanFP: pangenome-based functional profiles for microbial communities.

BMC Res Notes. 2015-9-26

[9]
MIPE: A metagenome-based community structure explorer and SSU primer evaluation tool.

PLoS One. 2017-3-28

[10]
Assessment of k-mer spectrum applicability for metagenomic dissimilarity analysis.

BMC Bioinformatics. 2016-1-16

引用本文的文献

[1]
Characterizing the microbiomes of Antarctic sponges: a functional metagenomic approach.

Sci Rep. 2020-1-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索