Suppr超能文献

Redox reactivity of bacterial and mammalian ferritin: is reductant entry into the ferritin interior a necessary step for iron release?

作者信息

Watt G D, Jacobs D, Frankel R B

机构信息

Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215.

出版信息

Proc Natl Acad Sci U S A. 1988 Oct;85(20):7457-61. doi: 10.1073/pnas.85.20.7457.

Abstract

Both mammalian and bacterial ferritin undergo rapid reaction with small-molecule reductants, in the absence of Fe2+ chelators, to form ferritins with reduced (Fe2+) mineral cores. Large, low-potential reductants (flavoproteins and ferredoxins) similarly react anaerobically with both ferritin types to quantitatively produce Fe2+ in the ferritin cores. The oxidation of Fe2+ ferritin by large protein oxidants [cytochrome c and Cu(II) proteins] also occurs readily, yielding reduced heme and Cu(I) proteins and ferritins with Fe3+ in their cores. These latter oxidants also convert enthetically added Fe2+, bound in mammalian or bacterial apo- or holoferritin, to the corresponding Fe3+ state in the core of each ferritin type. Because the protein reductants and oxidants are much larger than the channels leading into the mineral core attached to the ferritin interior, we conclude that redox reactions involving the Fe2+/Fe3+ components of the ferritin core can occur without direct interaction of the redox reagent at the mineral core surface. Our results also suggest that the oxo, hydroxy species of the core, composed essentially of Fe(O)OH, arise exclusively from solvent deprotonation. The long-distance ferritin-protein electron transfer observed in this study may occur by electron tunneling.

摘要

相似文献

3
Fe2+ binding to apo and holo mammalian ferritin.
Biochemistry. 1989 Nov 14;28(23):9216-21. doi: 10.1021/bi00449a038.
4
Reduction of mammalian ferritin.
Proc Natl Acad Sci U S A. 1985 Jun;82(11):3640-3. doi: 10.1073/pnas.82.11.3640.
5
Fe2+ and phosphate interactions in bacterial ferritin from Azotobacter vinelandii.
Biochemistry. 1992 Jun 23;31(24):5672-9. doi: 10.1021/bi00139a035.
6
Redox reactions associated with iron release from mammalian ferritin.
Biochemistry. 1989 Feb 21;28(4):1650-5. doi: 10.1021/bi00430a033.
7
Chemically and biologically harmless versus harmful ferritin/copper-metallothionein couples.
Chemistry. 2015 Jan 7;21(2):808-13. doi: 10.1002/chem.201404660. Epub 2014 Nov 4.
8
Redox reactions of apo mammalian ferritin.
Biochemistry. 1992 Oct 13;31(40):9673-9. doi: 10.1021/bi00155a021.

引用本文的文献

1
Aggregation of Albumins under Reductive Radical Stress.
Int J Mol Sci. 2024 Aug 19;25(16):9009. doi: 10.3390/ijms25169009.
3
Iron Mobilization from Ferritin in Yeast Cell Lysate and Physiological Implications.
Int J Mol Sci. 2022 May 29;23(11):6100. doi: 10.3390/ijms23116100.
4
Sodium iodate induces ferroptosis in human retinal pigment epithelium ARPE-19 cells.
Cell Death Dis. 2021 Mar 3;12(3):230. doi: 10.1038/s41419-021-03520-2.
5
Iron stored in ferritin is chemically reduced in the presence of aggregating Aβ(1-42).
Sci Rep. 2020 Jun 25;10(1):10332. doi: 10.1038/s41598-020-67117-z.
6
Iron redox pathway revealed in ferritin via electron transfer analysis.
Sci Rep. 2020 Mar 4;10(1):4033. doi: 10.1038/s41598-020-60640-z.
7
Virus-Like Particles and Nanoparticles for Vaccine Development against HCMV.
Viruses. 2019 Dec 28;12(1):35. doi: 10.3390/v12010035.
8
Iron sulfur clusters in protein nanocages for photocatalytic hydrogen generation in acidic aqueous solutions.
Chem Sci. 2018 Dec 17;10(7):2179-2185. doi: 10.1039/c8sc05293j. eCollection 2019 Feb 21.
9
Reductive Mobilization of Iron from Intact Ferritin: Mechanisms and Physiological Implication.
Pharmaceuticals (Basel). 2018 Nov 5;11(4):120. doi: 10.3390/ph11040120.
10
Effect of chaotropes on the kinetics of iron release from ferritin by flavin nucleotides.
Biochim Biophys Acta Gen Subj. 2017 Dec;1861(12):3257-3262. doi: 10.1016/j.bbagen.2017.09.016. Epub 2017 Sep 21.

本文引用的文献

2
Model system oxidations supporting the crystal growth model of ferritin iron uptake.
Biochim Biophys Acta. 1982 Dec 17;719(3):641-3. doi: 10.1016/0304-4165(82)90255-0.
3
Iron transport and storage proteins.
Annu Rev Biochem. 1980;49:357-93. doi: 10.1146/annurev.bi.49.070180.002041.
4
Large-scale purification of high activity Azotobacter vinelandII nitrogenase.
Biochim Biophys Acta. 1980 Jul 10;614(1):196-209. doi: 10.1016/0005-2744(80)90180-1.
5
Ferritin: design and formation of an iron-storage molecule.
Philos Trans R Soc Lond B Biol Sci. 1984 Feb 13;304(1121):551-65. doi: 10.1098/rstb.1984.0046.
6
Ferritin: iron incorporation and iron release.
Experientia. 1970;26(2):218-20. doi: 10.1007/BF01895596.
7
The formation of ferritin from apoferritin. Kinetics and mechanism of iron uptake.
Biochem J. 1972 Jan;126(1):151-62. doi: 10.1042/bj1260151.
8
A hemoprotein from azotobacter containing non-heme iron: isolation and crystallization.
Biochem Biophys Res Commun. 1973 Oct 15;54(4):1274-81. doi: 10.1016/0006-291x(73)91125-x.
10
The release of iron from horse spleen ferritin by reduced flavins.
Biochem J. 1974 Nov;143(2):311-5. doi: 10.1042/bj1430311.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验