Suppr超能文献

不同发酵策略对分批补料生物反应器系统中β-甘露聚糖酶产量的影响。

Effect of different fermentation strategies on β-mannanase production in fed-batch bioreactor system.

作者信息

Germec Mustafa, Yatmaz Ercan, Karahalil Ercan, Turhan İrfan

机构信息

Department of Food Engineering, Akdeniz University, 07058, Antalya, Turkey.

Department of Food Engineering, Cankiri Karatekin University, 18100, Cankiri, Turkey.

出版信息

3 Biotech. 2017 May;7(1):77. doi: 10.1007/s13205-017-0694-9. Epub 2017 Apr 28.

Abstract

Mannanases, one of the important enzyme group for industry, are produced by numerous filamentous fungi, especially Aspergillus species with different fermentation methods. The aim of this study was to show the best fermentation method of β-mannanase production for fungal growth in fermenter. Therefore, different fermentation strategies in fed-batch fermentation (suspended, immobilized cell, biofilm and microparticle-enhanced bioreactor) were applied for β-mannanase production from glucose medium (GM) and carob extract medium (CEM) by using recombinant Aspergillus sojae. The highest β-mannanase activities were obtained from microparticle-enhanced bioreactor strategy. It was found to be 347.47 U/mL by adding 10 g/L of AlO to GM and 439.13 U/mL by adding 1 g/L of talcum into CEM. The maximum β-mannanase activities for suspended, immobilization, and biofilm reactor remained at 72.55 U/mL in GM, 148.81 U/mL in CEM, and 194.09 U/mL in GM, respectively. The reason for that is the excessive, and irregular shaped growth and bulk formation, inadequate oxygen transfer or substrate diffusion in bioreactor. Consequently, the enzyme activity was significantly enhanced by addition of microparticles compared to other fed-batch fermentation strategies. Also, repeatable β-mannanase activities were obtained by controlling of the cell morphology by adding microparticle inside the fermenter.

摘要

甘露聚糖酶是工业上重要的酶类之一,由多种丝状真菌产生,尤其是曲霉属真菌,采用不同的发酵方法。本研究的目的是展示在发酵罐中生产β-甘露聚糖酶以促进真菌生长的最佳发酵方法。因此,通过使用重组大豆曲霉,采用分批补料发酵中的不同发酵策略(悬浮、固定化细胞、生物膜和微粒增强生物反应器)从葡萄糖培养基(GM)和角豆提取物培养基(CEM)中生产β-甘露聚糖酶。微粒增强生物反应器策略获得了最高的β-甘露聚糖酶活性。在GM中添加10 g/L的AlO时,其活性为347.47 U/mL,在CEM中添加1 g/L滑石粉时,活性为439.13 U/mL。悬浮、固定化和生物膜反应器的最大β-甘露聚糖酶活性在GM中分别保持在72.55 U/mL、在CEM中为148.81 U/mL、在GM中为194.09 U/mL。原因是生物反应器中生长过度、形状不规则且形成团块,氧气传递或底物扩散不足。因此,与其他分批补料发酵策略相比,添加微粒显著提高了酶活性。此外,通过在发酵罐内添加微粒控制细胞形态,可获得可重复的β-甘露聚糖酶活性。

相似文献

1
Effect of different fermentation strategies on β-mannanase production in fed-batch bioreactor system.
3 Biotech. 2017 May;7(1):77. doi: 10.1007/s13205-017-0694-9. Epub 2017 Apr 28.
2
Controlling filamentous fungi morphology with microparticles to enhanced β-mannanase production.
Bioprocess Biosyst Eng. 2016 Sep;39(9):1391-9. doi: 10.1007/s00449-016-1615-8. Epub 2016 Apr 29.
3
β-Mannanase production and kinetic modeling from carob extract by using recombinant Aspergillus sojae.
Biotechnol Prog. 2019 Nov;35(6):e2885. doi: 10.1002/btpr.2885. Epub 2019 Aug 1.
4
Growth control agent for filamentous fungi: FDM based 3D printed cubes for suspended Aspergillus sojae fermentation.
Enzyme Microb Technol. 2021 Oct;150:109867. doi: 10.1016/j.enzmictec.2021.109867. Epub 2021 Jul 7.
5
Enhanced -mannanase production by by optimizing carbon source and feeding regimes.
Prep Biochem Biotechnol. 2022;52(7):845-853. doi: 10.1080/10826068.2021.2001753. Epub 2021 Nov 26.
7
Microparticle-enhanced polygalacturonase production by wild type .
3 Biotech. 2017 Dec;7(6):361. doi: 10.1007/s13205-017-1004-2. Epub 2017 Oct 3.
9
Effects of fed-batch and continuous fermentations on human lysozyme production by Kluyveromyces lactis K7 in biofilm reactors.
Bioprocess Biosyst Eng. 2015 Dec;38(12):2461-8. doi: 10.1007/s00449-015-1483-7. Epub 2015 Oct 12.
10
Production of β-mannanase, inulinase, and oligosaccharides from coffee wastes and extracts.
Int J Biol Macromol. 2024 Mar;261(Pt 1):129798. doi: 10.1016/j.ijbiomac.2024.129798. Epub 2024 Jan 28.

引用本文的文献

1
Optimization of fungicidal and acaricidal metabolite production by endophytic fungus Aspergillus sp. SPH2.
Bioresour Bioprocess. 2024 Mar 5;11(1):28. doi: 10.1186/s40643-024-00745-9.
2
Multispecies Bacterial Biofilms and Their Evaluation Using Bioreactors.
Foods. 2023 Dec 15;12(24):4495. doi: 10.3390/foods12244495.
3
Effects and interactions of metal oxides in microparticle-enhanced cultivation of filamentous microorganisms.
Eng Life Sci. 2021 Dec 2;22(12):725-743. doi: 10.1002/elsc.202100075. eCollection 2022 Dec.
4
Optimization and kinetic modeling of media composition for hyaluronic acid production from carob extract with Streptococcus zooepidemicus.
Bioprocess Biosyst Eng. 2022 Dec;45(12):2019-2029. doi: 10.1007/s00449-022-02806-9. Epub 2022 Nov 3.
6
Addition of aluminum oxide microparticles to My preculture enhances cellulase production and influences fungal morphology.
Eng Life Sci. 2018 Feb 22;18(6):353-358. doi: 10.1002/elsc.201700188. eCollection 2018 Jun.
7
Microparticle-enhanced polygalacturonase production by wild type .
3 Biotech. 2017 Dec;7(6):361. doi: 10.1007/s13205-017-1004-2. Epub 2017 Oct 3.

本文引用的文献

1
Microbial enzymes: industrial progress in 21st century.
3 Biotech. 2016 Dec;6(2):174. doi: 10.1007/s13205-016-0485-8. Epub 2016 Aug 19.
3
Controlling filamentous fungi morphology with microparticles to enhanced β-mannanase production.
Bioprocess Biosyst Eng. 2016 Sep;39(9):1391-9. doi: 10.1007/s00449-016-1615-8. Epub 2016 Apr 29.
5
Enhancement and modeling of microparticle-added Rhizopus oryzae lactic acid production.
Bioprocess Biosyst Eng. 2016 Feb;39(2):323-30. doi: 10.1007/s00449-015-1518-0. Epub 2015 Dec 12.
6
Evaluation of kojic acid production in a repeated-batch PCS biofilm reactor.
J Biotechnol. 2016 Jan 20;218:41-8. doi: 10.1016/j.jbiotec.2015.11.023. Epub 2015 Dec 3.
7
Effects of fed-batch and continuous fermentations on human lysozyme production by Kluyveromyces lactis K7 in biofilm reactors.
Bioprocess Biosyst Eng. 2015 Dec;38(12):2461-8. doi: 10.1007/s00449-015-1483-7. Epub 2015 Oct 12.
8
Enhanced Aspergillus ficuum phytase production in fed-batch and continuous fermentations in the presence of talcum microparticles.
Bioprocess Biosyst Eng. 2015 Aug;38(8):1431-6. doi: 10.1007/s00449-015-1384-9. Epub 2015 Mar 3.
9
Microparticle-enhanced Aspergillus ficuum phytase production and evaluation of fungal morphology in submerged fermentation.
Bioprocess Biosyst Eng. 2015 Jun;38(6):1075-80. doi: 10.1007/s00449-014-1349-4. Epub 2015 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验