Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19106, USA.
J Chem Phys. 2017 Apr 28;146(16):164903. doi: 10.1063/1.4981912.
Block copolymers, due to their ability to self-assemble into periodic structures with long range order, are appealing candidates to control the ordering of functionalized nanoparticles where it is well-accepted that the spatial distribution of nanoparticles in a polymer matrix dictates the resulting material properties. The large parameter space associated with block copolymer nanocomposites makes theory and simulation tools appealing to guide experiments and effectively isolate parameters of interest. We demonstrate a method for performing field-theoretic simulations in a constant volume-constant interfacial tension ensemble (nVγT) that enables the determination of the equilibrium properties of block copolymer nanocomposites, including when the composites are placed under tensile or compressive loads. Our approach is compatible with the complex Langevin simulation framework, which allows us to go beyond the mean-field approximation. We validate our approach by comparing our nVγT approach with free energy calculations to determine the ideal domain spacing and modulus of a symmetric block copolymer melt. We analyze the effect of numerical and thermodynamic parameters on the efficiency of the nVγT ensemble and subsequently use our method to investigate the ideal domain spacing, modulus, and nanoparticle distribution of a lamellar forming block copolymer nanocomposite. We find that the nanoparticle distribution is directly linked to the resultant domain spacing and is dependent on polymer chain density, nanoparticle size, and nanoparticle chemistry. Furthermore, placing the system under tension or compression can qualitatively alter the nanoparticle distribution within the block copolymer.
嵌段共聚物由于其能够自组装成具有长程有序的周期性结构,因此成为控制功能化纳米粒子有序的理想候选物,这一点已被广泛接受,即在聚合物基体中纳米粒子的空间分布决定了所得材料的性质。嵌段共聚物纳米复合材料的大参数空间使得理论和模拟工具成为指导实验和有效分离感兴趣参数的有吸引力的方法。我们展示了一种在恒定体积-恒定界面张力系综(nVγT)中进行场论模拟的方法,该方法能够确定嵌段共聚物纳米复合材料的平衡性质,包括复合材料在拉伸或压缩负载下的情况。我们的方法与复杂朗之万模拟框架兼容,这使我们能够超越平均场近似。我们通过将我们的 nVγT 方法与自由能计算进行比较,来验证我们的方法,以确定对称嵌段共聚物熔体的理想畴间距和模量。我们分析了数值和热力学参数对 nVγT 系综效率的影响,随后使用我们的方法研究了层状形成嵌段共聚物纳米复合材料的理想畴间距、模量和纳米粒子分布。我们发现,纳米粒子的分布与所得的畴间距直接相关,并且取决于聚合物链密度、纳米粒子尺寸和纳米粒子化学性质。此外,对系统施加拉伸或压缩可以定性地改变嵌段共聚物内的纳米粒子分布。