Suppr超能文献

通过核运行RNA测序鉴定活性微小RNA启动子。

Identification of active miRNA promoters from nuclear run-on RNA sequencing.

作者信息

Liu Qi, Wang Jing, Zhao Yue, Li Chung-I, Stengel Kristy R, Acharya Pankaj, Johnston Gretchen, Hiebert Scott W, Shyr Yu

机构信息

Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.

Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA.

出版信息

Nucleic Acids Res. 2017 Jul 27;45(13):e121. doi: 10.1093/nar/gkx318.

Abstract

The genome-wide identification of microRNA transcription start sites (miRNA TSSs) is essential for understanding how miRNAs are regulated in development and disease. In this study, we developed mirSTP (mirna transcription Start sites Tracking Program), a probabilistic model for identifying active miRNA TSSs from nascent transcriptomes generated by global run-on sequencing (GRO-seq) and precision run-on sequencing (PRO-seq). MirSTP takes advantage of characteristic bidirectional transcription signatures at active TSSs in GRO/PRO-seq data, and provides accurate TSS prediction for human intergenic miRNAs at a high resolution. MirSTP performed better than existing generalized and experiment specific methods, in terms of the enrichment of various promoter-associated marks. MirSTP analysis of 27 human cell lines in 183 GRO-seq and 28 PRO-seq experiments identified TSSs for 480 intergenic miRNAs, indicating a wide usage of alternative TSSs. By integrating predicted miRNA TSSs with matched ENCODE transcription factor (TF) ChIP-seq data, we connected miRNAs into the transcriptional circuitry, which provides a valuable source for understanding the complex interplay between TF and miRNA. With mirSTP, we not only predicted TSSs for 72 miRNAs, but also identified 12 primary miRNAs with significant RNA polymerase pausing alterations after JQ1 treatment; each miRNA was further validated through BRD4 binding to its predicted promoter. MirSTP is available at http://bioinfo.vanderbilt.edu/mirSTP/.

摘要

全基因组范围内鉴定微小RNA转录起始位点(miRNA TSSs)对于理解miRNA在发育和疾病中的调控机制至关重要。在本研究中,我们开发了mirSTP(微小RNA转录起始位点追踪程序),这是一种概率模型,用于从全局运行测序(GRO-seq)和精确运行测序(PRO-seq)产生的新生转录组中识别活跃的miRNA TSSs。MirSTP利用GRO/PRO-seq数据中活跃TSSs处的特征性双向转录特征,并以高分辨率为人基因间miRNA提供准确的TSS预测。在各种启动子相关标记的富集方面,MirSTP比现有的通用方法和实验特定方法表现更好。对183个GRO-seq和28个PRO-seq实验中的27个人类细胞系进行MirSTP分析,鉴定出480个人基因间miRNA的TSSs,表明替代TSSs的广泛使用。通过将预测的miRNA TSSs与匹配的ENCODE转录因子(TF)ChIP-seq数据整合,我们将miRNA连接到转录调控网络中,这为理解TF和miRNA之间复杂的相互作用提供了有价值的资源。利用mirSTP,我们不仅预测了72个miRNA的TSSs,还鉴定出12个在JQ1处理后RNA聚合酶暂停有显著改变的初级miRNA;每个miRNA通过BRD4与其预测启动子的结合进一步得到验证。MirSTP可在http://bioinfo.vanderbilt.edu/mirSTP/获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be28/5737662/3251533e5a76/gkx318fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验