Suppr超能文献

基于微卫星的 -、- 和双突变甜玉米自交系的遗传多样性分析及其在育种计划中的应用。

Microsatellite-based genetic diversity analyses of -, - and double mutant- sweet corn inbreds for their utilization in breeding programme.

作者信息

Mehta Brijesh, Hossain Firoz, Muthusamy Vignesh, Baveja Aanchal, Zunjare Rajkumar, Jha Shailendra K, Gupta Hari S

机构信息

ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.

Borlaug Institute for South Asia, New Delhi, India.

出版信息

Physiol Mol Biol Plants. 2017 Apr;23(2):411-420. doi: 10.1007/s12298-017-0431-1. Epub 2017 Mar 27.

Abstract

Sweet corn has recently experienced sharp rise in demand worldwide. Recessive () and () that enhances kernel sweetness have been abundantly used in sweet corn breeding. Analyses of genetic diversity among sweet corn inbreds assume great significance for their effective utilization in hybrid breeding. A set of 48 diverse sweet corn genotypes encompassing , and types were analyzed using 56 microsatellite markers. A total of 213 alleles with mean of 3.8 alleles per locus were generated. Two unique- and 12 rare- alleles were identified. The average PIC and genetic dissimilarity was 0.50 and 0.73, respectively. Cluster analysis grouped the inbreds into three major clusters, with each of the -, - and -types were broadly clustered together. Principal coordinate analyses also depicted the diverse origin of the genotypes. The study identified inbreds for synthesis of pools and pedigree populations to develop novel inbreds. The study led to the identification of prospective heterotic combinations in various genetic backgrounds ( ×  ×  ×  ×  and  × ).

摘要

甜玉米最近在全球范围内需求急剧上升。增强籽粒甜度的隐性()和()已被广泛应用于甜玉米育种。分析甜玉米自交系之间的遗传多样性对于它们在杂交育种中的有效利用具有重要意义。使用56个微卫星标记对一组包含、和类型的48个不同甜玉米基因型进行了分析。共产生了213个等位基因,每个位点平均有3.8个等位基因。鉴定出两个独特等位基因和12个稀有等位基因。平均多态信息含量(PIC)和遗传差异分别为0.50和0.73。聚类分析将自交系分为三个主要类群,其中每个、和类型大致聚在一起。主坐标分析也描绘了基因型的不同起源。该研究确定了用于合成群体和系谱群体以培育新型自交系的自交系。该研究导致在各种遗传背景(×××××和×)中鉴定出潜在的杂种优势组合。

相似文献

1
Microsatellite-based genetic diversity analyses of -, - and double mutant- sweet corn inbreds for their utilization in breeding programme.
Physiol Mol Biol Plants. 2017 Apr;23(2):411-420. doi: 10.1007/s12298-017-0431-1. Epub 2017 Mar 27.
2
Allelic variation in shrunken2 gene affecting kernel sweetness in exotic-and indigenous-maize inbreds.
PLoS One. 2022 Sep 22;17(9):e0274732. doi: 10.1371/journal.pone.0274732. eCollection 2022.
3
Allelic variation in sugary1 gene affecting kernel sweetness among diverse-mutant and -wild-type maize inbreds.
Mol Genet Genomics. 2021 Sep;296(5):1085-1102. doi: 10.1007/s00438-021-01807-9. Epub 2021 Jun 23.
4
Microsatellite marker-based characterization of waxy maize inbreds for their utilization in hybrid breeding.
3 Biotech. 2017 Oct;7(5):316. doi: 10.1007/s13205-017-0946-8. Epub 2017 Sep 14.
7
Genetic diversity of sweet corn inbreds using agro-morphological traits and microsatellite markers.
3 Biotech. 2018 Aug;8(8):332. doi: 10.1007/s13205-018-1353-5. Epub 2018 Jul 21.
9
Characterization of crtRB1- and vte4-based biofortified sweet corn inbreds for seed vigour and physico-biochemical traits.
J Appl Genet. 2022 Dec;63(4):651-662. doi: 10.1007/s13353-022-00715-x. Epub 2022 Aug 16.

引用本文的文献

1
Enrichment of Vitamin A and Vitamin E in Sweet Corn Kernels Through Genomics-Assisted Introgression of Mutant Version of crtRB1 and vte4 Genes.
Appl Biochem Biotechnol. 2025 Mar;197(3):1889-1905. doi: 10.1007/s12010-024-05104-0. Epub 2024 Dec 2.
3
Cloned genes and genetic regulation of anthocyanin biosynthesis in maize, a comparative review.
Front Plant Sci. 2024 Jan 24;15:1310634. doi: 10.3389/fpls.2024.1310634. eCollection 2024.
4
Allelic variation in shrunken2 gene affecting kernel sweetness in exotic-and indigenous-maize inbreds.
PLoS One. 2022 Sep 22;17(9):e0274732. doi: 10.1371/journal.pone.0274732. eCollection 2022.
6
Allelic variation in sugary1 gene affecting kernel sweetness among diverse-mutant and -wild-type maize inbreds.
Mol Genet Genomics. 2021 Sep;296(5):1085-1102. doi: 10.1007/s00438-021-01807-9. Epub 2021 Jun 23.
7
Molecular analysis of mutant () gene in diverse waxy maize inbreds.
3 Biotech. 2019 Jan;9(1):3. doi: 10.1007/s13205-018-1530-6. Epub 2018 Dec 11.
8
Genetic diversity of sweet corn inbreds using agro-morphological traits and microsatellite markers.
3 Biotech. 2018 Aug;8(8):332. doi: 10.1007/s13205-018-1353-5. Epub 2018 Jul 21.
9
Microsatellite marker-based characterization of waxy maize inbreds for their utilization in hybrid breeding.
3 Biotech. 2017 Oct;7(5):316. doi: 10.1007/s13205-017-0946-8. Epub 2017 Sep 14.

本文引用的文献

1
Genetic divergence among sweet corn lines estimated by microsatellite markers.
Genet Mol Res. 2014 Dec 12;13(4):10415-26. doi: 10.4238/2014.December.12.3.
2
Genetic Control of Carbohydrate Synthesis in Maize Endosperm.
Genetics. 1965 Dec;52(6):1175-86. doi: 10.1093/genetics/52.6.1175.
3
Immunological characterization of maize starch branching enzymes.
Plant Physiol. 1983 Jul;72(3):813-6. doi: 10.1104/pp.72.3.813.
4
PowerMarker: an integrated analysis environment for genetic marker analysis.
Bioinformatics. 2005 May 1;21(9):2128-9. doi: 10.1093/bioinformatics/bti282. Epub 2005 Feb 10.
5
Use of SSRs for establishing heterotic groups in subtropical maize.
Theor Appl Genet. 2003 Sep;107(5):947-57. doi: 10.1007/s00122-003-1333-x. Epub 2003 Jun 27.
8
Identification and molecular characterization of shrunken-2 cDNA clones of maize.
Plant Cell. 1990 Jun;2(6):581-8. doi: 10.1105/tpc.2.6.581.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验