Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University , Xi'an 710049, China.
ACS Appl Mater Interfaces. 2017 May 17;9(19):16117-16127. doi: 10.1021/acsami.7b00739. Epub 2017 May 8.
In this work, a novel porous nanoneedlelike MnO-FeO catalyst (MnO-FeO nanoneedles) was developed for the first time by rationally heat-treating metal-organic frameworks including MnFe precursor synthesized by hydrothermal method. A counterpart catalyst (MnO-FeO nanoparticles) without porous nanoneedle structure was also prepared by a similar procedure for comparison. The two catalysts were systematically characterized by scanning and transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, hydrogen temperature-programmed reduction, ammonia temperature-programmed desorption, and in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFT), and their catalytic activities were evaluated by selective catalytic reduction (SCR) of NO by NH. The results showed that the rationally designed MnO-FeO nanoneedles presented outstanding low-temperature NH-SCR activity (100% NO conversion in a wide temperature window from 120 to 240 °C), high selectivity for N (nearly 100% N selectivity from 60 to 240 °C), and excellent water resistance and stability in comparison with the counterpart MnO-FeO nanoparticles. The reasons can be attributed not only to the unique porous nanoneedle structure but also to the uniform distribution of MnO and FeO. More importantly, the desired Mn/Mn and O/(O + O) ratios, as well as rich redox sites and abundant strong acid sites on the surface of the porous MnO-FeO nanoneedles, also contribute to these excellent performances. In situ DRIFT suggested that the NH-SCR of NO over MnO-FeO nanoneedles follows both Eley-Rideal and Langmuir-Hinshelwood mechanisms.
在这项工作中,首次通过合理热处理包括水热法合成的 MnFe 前体的金属有机骨架,开发了一种新型多孔纳米针状 MnO-FeO 催化剂(MnO-FeO 纳米针)。还通过类似的程序制备了具有无多孔纳米针结构的对应催化剂(MnO-FeO 纳米颗粒)进行比较。通过扫描和透射电子显微镜、X 射线衍射、热重分析、X 射线光电子能谱、氢气程序升温还原、氨程序升温脱附和原位漫反射红外傅里叶变换光谱(原位 DRIFT)对两种催化剂进行了系统表征,并通过选择性催化还原(SCR)评价了它们的催化活性。由 NH 进行 NO。结果表明,合理设计的 MnO-FeO 纳米针在很宽的温度窗口(120 至 240°C)下表现出出色的低温 NH-SCR 活性(100%的 NO 转化率)、对 N 的高选择性(60 至 240°C 之间近 100%的 N 选择性)以及出色的耐水性和稳定性。与对应物 MnO-FeO 纳米颗粒相比。原因不仅在于独特的多孔纳米针结构,还在于 MnO 和 FeO 的均匀分布。更重要的是,所需的 Mn/Mn 和 O/(O+O) 比以及多孔 MnO-FeO 纳米针表面丰富的氧化还原位点和丰富的强酸位点也有助于这些优异的性能。原位 DRIFT 表明,MnO-FeO 纳米针上的 NO 的 NH-SCR 遵循 Eley-Rideal 和 Langmuir-Hinshelwood 两种机制。