School of Public Health, University of Illinois at Chicago, 2121 W Taylor Street, Chicago, IL 60612 USA.
Dornsife School of Public Health, Drexel University, 3215 Market Street, Philadelphia, PA 19104 USA.
Ann Work Expo Health. 2017 Jun 1;61(5):504-514. doi: 10.1093/annweh/wxx032.
Bayesian analysis is a flexible method that can yield insight into occupational exposures as the methods quantify plausible values for exposure parameters of interest, such as the mean, variance, and specific percentiles of the exposure distribution. We describe three Bayesian analysis methods for the analysis of normally distributed data (e.g. the logarithm of measurements of chemical hazards) that use conjugate prior distributions (normal for the mean, and inverse-χ2, inverse-Γ, or vague for the variance) to provide analytical expressions for the posterior distributions of the sufficient statistics of the normal distribution (e.g. the mean and variance). From these posterior distributions, the posterior distribution of any parameter of interest about the exposure distribution can be tabulated. The methods are illustrated using lead exposure data collected by the Occupational Safety and Health Administration at a copper foundry on multiple occasions. A unique feature of the normal-inverse-Γ method is that dependence of the mean and variance prior distributions is integrated out of the posterior distributions expressions, suggesting that a 'default' prior distribution on variance may be used: candidate default distributions are proposed based on the literature. Relative to other Bayesian analysis methods used in industrial hygiene, the methods described are flexible, and can be implemented without specialized software.
贝叶斯分析是一种灵活的方法,可以深入了解职业暴露情况,因为这些方法可以量化感兴趣的暴露参数(如暴露分布的均值、方差和特定分位数)的合理值。我们描述了三种用于分析正态分布数据的贝叶斯分析方法(例如,化学危害测量的对数),这些方法使用共轭先验分布(均值为正态,方差为逆 χ2、逆 Γ 或模糊)为正态分布的充分统计量的后验分布(例如均值和方差)提供解析表达式。从这些后验分布中,可以列出关于暴露分布的任何感兴趣参数的后验分布。该方法使用职业安全与健康管理局在多次铜铸造厂收集的铅暴露数据进行说明。正态-逆 Γ 方法的一个独特特征是,均值和方差先验分布的依赖性从后验分布表达式中排除,这表明可以使用“默认”方差先验分布:根据文献提出了候选默认分布。与工业卫生中使用的其他贝叶斯分析方法相比,所描述的方法更加灵活,无需专门的软件即可实现。