Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University , Beijing 100084, China.
ACS Appl Mater Interfaces. 2017 May 24;9(20):17279-17289. doi: 10.1021/acsami.7b04253. Epub 2017 May 10.
Organic light-emitting diodes (OLEDs) with simple structures are attracting a lot of attention nowadays, though their performances are always inferior to those of the more complicated structures as multifunctional materials are rare. Here, we have designed and synthesized multifunctional isomers by combining electron-donating carbazole (Cz) and triphenylamine (TPA) units with electron-accepting triazine (Trz), namely, N-[4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl]-N-[4-(9-phenyl-9H-carbazol-3-yl)phenyl]-[1,1'-biphenyl]-4-amine (CzTPA-p-Trz) and N-[3-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl]-N-[4-(9-phenyl-9H-carbazol-3-yl)phenyl]-[1,1'-biphenyl]-4-amine (CzTPA-m-Trz). The use of multiple electron-donating groups gives them suitable highest occupied molecular orbitals for hole injection and high mobilities for hole transport. Hole-only devices with CzTPA-m-Trz or CzTPA-p-Trz as the hole injection layers and hole transport layers show a higher hole current than the widely used 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile/4,4'-N,N'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl system. Interestingly, CzTPA-p-Trz is a fluorescent material with a high photoluminescence quantum yield (PLQY), while CzTPA-m-Trz shows weak thermally activated delayed fluorescence (TADF). As expected, a CzTPA-p-Trz-based undoped double-layer green device achieved a higher external quantum efficiency (EQE) of 4.4% and a higher power efficiency (PE) of 11.8 lm/W. On the other hand, among double-layer devices doped with an orange phosphorescent dopant, a device based on TADF material, CzTPA-m-Trz, achieved higher peak EQE (23.5%) and PE (68.3 lm/W) than those of CzTPA-p-Trz (20.8% and 60.2 lm/W). Even at a high luminance of 5000 cd m, a high EQE of 21.8% was retained for CzTPA-m-Trz-based devices. These results are even comparable to those for the state-of-the-art phosphorescent devices based on the same dopant with more complicated structures. The above results indicate that well-designed multifunctional materials are promising for high-performance OLEDs with simple structures.
有机发光二极管 (OLED) 具有简单的结构,尽管它们的性能总是不如更复杂结构的性能,因为多功能材料很少。在这里,我们通过将电子给体咔唑 (Cz) 和三苯胺 (TPA) 单元与电子受体三嗪 (Trz) 结合,设计并合成了多功能异构体,即 N-[4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基]-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-[1,1'-联苯]-4-胺 (CzTPA-p-Trz) 和 N-[3-(4,6-二苯基-1,3,5-三嗪-2-基)苯基]-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-[1,1'-联苯]-4-胺 (CzTPA-m-Trz)。使用多个电子给体基团为它们提供了合适的最高占据分子轨道,以利于空穴注入,并具有较高的空穴迁移率。以 CzTPA-m-Trz 或 CzTPA-p-Trz 作为空穴注入层和空穴传输层的空穴器件显示出比广泛使用的 1,4,5,8,9,11-六氮杂三苯六腈/4,4'-N,N'-双[N-(1-萘基)-N-苯基氨基]联苯系统更高的空穴电流。有趣的是,CzTPA-p-Trz 是一种具有高光致发光量子产率 (PLQY) 的荧光材料,而 CzTPA-m-Trz 则表现出较弱的热活化延迟荧光 (TADF)。不出所料,基于 CzTPA-p-Trz 的无掺杂双层绿光器件实现了 4.4% 的更高外量子效率 (EQE) 和 11.8 lm/W 的更高功率效率 (PE)。另一方面,在掺杂橙色磷光掺杂剂的双层器件中,基于 TADF 材料 CzTPA-m-Trz 的器件实现了比基于 CzTPA-p-Trz 的器件更高的峰值 EQE(23.5%)和 PE(68.3 lm/W)(20.8%和 60.2 lm/W)。即使在 5000 cd/m 的高亮度下,基于 CzTPA-m-Trz 的器件仍保持 21.8% 的高 EQE。这些结果甚至可与具有更复杂结构的相同掺杂剂的最先进磷光器件相媲美。上述结果表明,精心设计的多功能材料有望用于具有简单结构的高性能 OLED。