CNRS/Univ. Pau & Pays Adour , Laboratoire des Fluides Complexes et de Leurs Réservoirs, UMR5150, 64000 Pau, France.
CNRS/Univ. Pau & Pays Adour , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR5254, 64000 Pau, France.
Langmuir. 2017 May 30;33(21):5179-5187. doi: 10.1021/acs.langmuir.7b01025. Epub 2017 May 17.
Round glass capillaries are a basic tool in soft-matter science, but often are shunned due to the astigmatism they introduce in micrographs. Here, we show how refraction in a capillary can be a help instead of a hindrance to obtain precise and sensitive information on two important interfacial properties: the contact angle of two immiscible fluids and the presence of thin films on the capillary wall. Understanding optical cusps due to refraction allows direct mesurement of the inner diameter of a capillary at the meniscus, which, with the height of the meniscus cap, determines the contact angle. The meniscus can thus be measured without intrusive additives to enhance visibility, such as dyes or calibrated particles, in uniform, curved, or even tapered capillaries or under demanding conditions not accessible by conventional methods, such as small volumes (μL), high temperatures, or high pressures. We further elicit the conditions for strong internal reflection on the inner capillary wall, involving the wall and fluid refractive indices and the wall thickness, and show how to choose the capillary section to detect thin (submicron) layers on the wall, by the contribution of total internal reflection to the cusps. As examples, we report the following: (i) CO-water or -brine contact angles at glass interfaces, measured at temperatures and pressures up to 200 °C and 600 bar, revealing an effect apparently so far unreported-the decrease in the water-wet character of glass, due to dissolved salts in brine, is strongly reduced at high temperatures, where contact angles converge toward the values in pure water; (ii) A tenuous gas hydrate layer growing from the water-guest contact line on glass, invisible in transmission microscopy but prominent in the cusps due to total internal reflection.
圆玻璃毛细管是软物质科学的基本工具,但由于它们在显微镜照片中引入的像散,通常会被回避。在这里,我们展示了如何将毛细管中的折射从障碍转化为帮助,以获得关于两个重要界面性质的精确和敏感的信息:两种不混溶流体的接触角以及毛细管壁上存在的薄膜。理解由于折射引起的光尖峰可以直接测量在弯月面处的毛细管内径,该内径与弯月面盖的高度一起确定接触角。因此,即使在没有增强可见度的侵入性添加剂(例如染料或校准粒子)的情况下,也可以在均匀、弯曲甚至锥形的毛细管中或在传统方法无法达到的苛刻条件下(例如小体积(μL)、高温或高压)测量弯月面。我们进一步引出了在内壁上发生强内反射的条件,涉及壁和流体的折射率和壁厚度,并展示了如何通过总内反射对尖峰的贡献,选择毛细管部分来检测壁上的薄(亚微米)层。作为示例,我们报告了以下内容:(i)在高达 200°C 和 600 巴的温度和压力下,在玻璃界面处测量的 CO-水或 -盐水接触角,揭示了一个显然迄今未报告的效果-由于盐水溶解盐,玻璃的亲水性降低,在高温下大大降低,接触角趋向于纯水的值;(ii)在玻璃上从水客体接触线生长的脆弱气体水合物层,在透射显微镜中不可见,但由于全内反射在尖峰中很明显。