Lev Ifat, Shemesh Keren, Volpe Marina, Sau Soumitra, Levinton Nelly, Molco Maya, Singh Shivani, Liefshitz Batia, Ben Aroya Shay, Kupiec Martin
Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.
Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel.
Genetics. 2017 Jul;206(3):1683-1697. doi: 10.1534/genetics.117.200451. Epub 2017 May 5.
The vast majority of processes within the cell are carried out by proteins working in conjunction. The Yeast Two-Hybrid (Y2H) methodology allows the detection of physical interactions between any two interacting proteins. Here, we describe a novel systematic genetic methodology, "Reverse Yeast Two-Hybrid Array" (RYTHA), that allows the identification of proteins required for modulating the physical interaction between two given proteins. Our assay starts with a yeast strain in which the physical interaction of interest can be detected by growth on media lacking histidine, in the context of the Y2H methodology. By combining the synthetic genetic array technology, we can systematically screen mutant libraries of the yeast to identify -acting mutations that disrupt the physical interaction of interest. We apply this novel method in a screen for mutants that disrupt the interaction between the N-terminus of Elg1 and the Slx5 protein. Elg1 is part of an alternative replication factor C-like complex that unloads PCNA during DNA replication and repair. Slx5 forms, together with Slx8, a SUMO-targeted ubiquitin ligase (STUbL) believed to send proteins to degradation. Our results show that the interaction requires both the STUbL activity and the PCNA unloading by Elg1, and identify topoisomerase I DNA-protein cross-links as a major factor in separating the two activities. Thus, we demonstrate that RYTHA can be applied to gain insights about particular pathways in yeast, by uncovering the connection between the proteasomal ubiquitin-dependent degradation pathway, DNA replication, and repair machinery, which can be separated by the topoisomerase-mediated cross-links to DNA.
细胞内绝大多数过程是由协同工作的蛋白质来执行的。酵母双杂交(Y2H)方法可检测任意两种相互作用蛋白质之间的物理相互作用。在此,我们描述了一种新型的系统遗传方法,即“反向酵母双杂交阵列”(RYTHA),它能够鉴定调节两个给定蛋白质之间物理相互作用所需的蛋白质。我们的检测从一个酵母菌株开始,在Y2H方法的背景下,通过在缺乏组氨酸的培养基上生长来检测感兴趣的物理相互作用。通过结合合成遗传阵列技术,我们可以系统地筛选酵母突变文库,以鉴定破坏感兴趣的物理相互作用的顺式作用突变。我们将这种新方法应用于筛选破坏Elg1 N端与Slx5蛋白之间相互作用的突变体。Elg1是一种替代复制因子C样复合物的一部分,在DNA复制和修复过程中卸载PCNA。Slx5与Slx8一起形成一种SUMO靶向泛素连接酶(STUbL),据信该酶可将蛋白质送去降解。我们的结果表明,这种相互作用既需要STUbL活性,也需要Elg1卸载PCNA,并将拓扑异构酶I DNA - 蛋白质交联鉴定为分离这两种活性的主要因素。因此,我们证明RYTHA可用于深入了解酵母中的特定途径,通过揭示蛋白酶体泛素依赖性降解途径、DNA复制和修复机制之间通过拓扑异构酶介导的与DNA的交联而可分离的联系。