Jin Lanying, Wang Yuemin
Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, P. R. China.
Phys Chem Chem Phys. 2017 May 24;19(20):12992-13001. doi: 10.1039/c7cp01715d.
The adsorption and reactions of CHOH on nonpolar mixed-terminated ZnO(101[combining macron]0), polar O-ZnO(0001[combining macron]) and Zn-ZnO(0001) surfaces have been studied systematically using high-resolution electron energy loss spectroscopy (HREELS) in conjunction with temperature programmed desorption (TPD). For all three ZnO surfaces, exposure to methanol at room temperature leads to (partially) dissociative adsorption resulting in the formation of hydroxyl and methoxy species. Upon heating to higher temperatures, the dissociated and intact methanol species on ZnO(101[combining macron]0) predominantly undergo molecular desorption releasing CHOH at 370 and 440 K. The Zn-O dimer vacancies are responsible for the decomposition of a small fraction of methanol yielding H, CHO and CO at 540 and 565 K. The interaction of methanol with polar O-ZnO and Zn-ZnO surfaces is dominated by thermal decomposition of CHOH to produce CHO, H, CO, CO and HO at elevated temperatures. The high chemical reactivity of both polar surfaces is related to the high abundance of different types of surface defects formed via massive restructuring. Importantly, the reconstructed Zn-ZnO surface exhibits high selectivity for hydrogen production at 520 K, which was not observed for the polar O-ZnO surface. The HREELS data revealed that this low-temperature hydrogen evolution on Zn-ZnO results from methoxy oxidation to a formate species occurring at O-terminated step-edge sites.
利用高分辨电子能量损失谱(HREELS)结合程序升温脱附(TPD),系统研究了甲醇在非极性混合端接的ZnO(101̅0)、极性O-ZnO(0001̅)和Zn-ZnO(0001)表面的吸附及反应。对于所有这三种ZnO表面,室温下暴露于甲醇会导致(部分)解离吸附,从而形成羟基和甲氧基物种。加热到更高温度时,ZnO(101̅0)表面上解离的和完整的甲醇物种主要进行分子脱附,在370和440 K释放出CH₃OH。Zn-O二聚体空位导致一小部分甲醇在540和565 K分解产生H、CH₃O和CO。甲醇与极性O-ZnO和Zn-ZnO表面的相互作用主要是在高温下CH₃OH热分解生成CH₃O、H、CO、CO₂和H₂O。两个极性表面的高化学反应活性与通过大量重构形成的不同类型表面缺陷的高丰度有关。重要的是,重构的Zn-ZnO表面在520 K时对氢气产生具有高选择性,而极性O-ZnO表面未观察到这种现象。HREELS数据表明,Zn-ZnO表面上这种低温析氢是由甲氧基在O端接的台阶边缘位点氧化为甲酸根物种所致。