Centre for Hydrogeology and Geothermics, Université de Neuchâtel , 2000 Neuchâtel, Switzerland.
Grup de Mineralogia Aplicada i Geoquímica de Fluids, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Martí Franques s/n, Universitat de Barcelona (UB) , 08028 Barcelona, Spain.
Environ Sci Technol. 2017 Jun 6;51(11):6174-6184. doi: 10.1021/acs.est.7b00679. Epub 2017 May 17.
To use compound-specific isotope analysis for confidently assessing organic contaminant attenuation in the environment, isotope fractionation patterns associated with different transformation mechanisms must first be explored in laboratory experiments. To deliver this information for the common groundwater contaminant chloroform (CF), this study investigated for the first time both carbon and chlorine isotope fractionation for three different engineered reactions: oxidative C-H bond cleavage using heat-activated persulfate, transformation under alkaline conditions (pH ∼ 12) and reductive C-Cl bond cleavage by cast zerovalent iron, Fe(0). Carbon and chlorine isotope fractionation values were -8 ± 1‰ and -0.44 ± 0.06‰ for oxidation, -57 ± 5‰ and -4.4 ± 0.4‰ for alkaline hydrolysis (pH 11.84 ± 0.03), and -33 ± 11‰ and -3 ± 1‰ for dechlorination, respectively. Carbon and chlorine apparent kinetic isotope effects (AKIEs) were in general agreement with expected mechanisms (C-H bond cleavage in oxidation by persulfate, C-Cl bond cleavage in Fe(0)-mediated reductive dechlorination and E1 elimination mechanism during alkaline hydrolysis) where a secondary AKIE (1.00045 ± 0.00004) was observed for oxidation. The different dual carbon-chlorine (ΔδC vs ΔδCl) isotope patterns for oxidation by thermally activated persulfate and alkaline hydrolysis (17 ± 2 and 13.0 ± 0.8, respectively) vs reductive dechlorination by Fe(0) (8 ± 2) establish a base to identify and quantify these CF degradation mechanisms in the field.
为了在环境中可靠地评估有机污染物的衰减,需要首先在实验室实验中探索与不同转化机制相关的同位素分馏模式。为了提供常见地下水污染物三氯甲烷(CF)的相关信息,本研究首次研究了三种不同工程反应的碳和氯同位素分馏:使用热激活过硫酸盐的氧化 C-H 键断裂、碱性条件(pH ∼ 12)下的转化以及零价铁(Fe(0))的还原 C-Cl 键断裂。氧化的碳和氯同位素分馏值分别为-8 ± 1‰和-0.44 ± 0.06‰,碱性水解(pH 11.84 ± 0.03)的碳和氯同位素分馏值分别为-57 ± 5‰和-4.4 ± 0.4‰,而脱氯的碳和氯同位素分馏值分别为-33 ± 11‰和-3 ± 1‰。碳和氯的表观动力学同位素效应(AKIE)与预期的机制基本一致(过硫酸盐的氧化中的 C-H 键断裂、Fe(0)介导的还原脱氯中的 C-Cl 键断裂和碱性水解中的 E1 消除机制),其中观察到氧化的二次 AKIE(1.00045 ± 0.00004)。过硫酸盐热激活氧化和碱性水解(分别为 17 ± 2 和 13.0 ± 0.8)与 Fe(0)还原脱氯(8 ± 2)的不同双碳-氯(ΔδC 与 ΔδCl)同位素模式为识别和量化这些 CF 降解机制提供了基础。