Suppr超能文献

定量显微光谱成像揭示活细胞中病毒和细胞RNA解旋酶的相互作用。

Quantitative microspectroscopic imaging reveals viral and cellular RNA helicase interactions in live cells.

作者信息

Corby M J, Stoneman Michael R, Biener Gabriel, Paprocki Joel D, Kolli Rajesh, Raicu Valerica, Frick David N

机构信息

From the Departments of Chemistry and Biochemistry.

Physics, and.

出版信息

J Biol Chem. 2017 Jul 7;292(27):11165-11177. doi: 10.1074/jbc.M117.777045. Epub 2017 May 8.

Abstract

Human cells detect RNA viruses through a set of helicases called RIG-I-like receptors (RLRs) that initiate the interferon response via a mitochondrial signaling complex. Many RNA viruses also encode helicases, which are sometimes covalently linked to proteases that cleave signaling proteins. One unresolved question is how RLRs interact with each other and with viral proteins in cells. This study examined the interactions among the hepatitis C virus (HCV) helicase and RLR helicases in live cells with quantitative microspectroscopic imaging (Q-MSI), a technique that determines FRET efficiency and subcellular donor and acceptor concentrations. HEK293T cells were transfected with various vector combinations to express cyan fluorescent protein (CFP) or YFP fused to either biologically active HCV helicase or one RLR ( RIG-I, MDA5, or LGP2), expressed in the presence or absence of polyinosinic-polycytidylic acid (poly(I:C)), which elicits RLR accumulation at mitochondria. Q-MSI confirmed previously reported RLR interactions and revealed an interaction between HCV helicase and LGP2. Mitochondria in CFP-RIG-I:YFP-RIG-I cells, CFP-MDA5:YFP-MDA5 cells, and CFP-MDA5:YFP-LGP2 cells had higher FRET efficiencies in the presence of poly(I:C), indicating that RNA causes these proteins to accumulate at mitochondria in higher-order complexes than those formed in the absence of poly(I:C). However, mitochondria in CFP-LGP2:YFP-LGP2 cells had lower FRET signal in the presence of poly(I:C), suggesting that LGP2 oligomers disperse so that LGP2 can bind MDA5. Data support a new model where an LGP2-MDA5 oligomer shuttles NS3 to the mitochondria to block antiviral signaling.

摘要

人类细胞通过一组称为视黄酸诱导基因I样受体(RLRs)的解旋酶来检测RNA病毒,这些解旋酶通过线粒体信号复合体启动干扰素反应。许多RNA病毒也编码解旋酶,这些解旋酶有时与切割信号蛋白的蛋白酶共价连接。一个尚未解决的问题是RLRs在细胞中如何相互作用以及与病毒蛋白相互作用。本研究利用定量显微光谱成像(Q-MSI)技术,在活细胞中检测丙型肝炎病毒(HCV)解旋酶与RLR解旋酶之间的相互作用,该技术可确定荧光共振能量转移(FRET)效率以及亚细胞供体和受体浓度。用各种载体组合转染HEK293T细胞,以表达与具有生物活性的HCV解旋酶或一种RLR(视黄酸诱导基因I、黑色素瘤分化相关基因5或实验室遗传学与生理学2)融合的青色荧光蛋白(CFP)或黄色荧光蛋白(YFP),在存在或不存在聚肌苷酸-聚胞苷酸(poly(I:C))的情况下表达,poly(I:C)会引发RLR在线粒体上的积累。Q-MSI证实了先前报道的RLR相互作用,并揭示了HCV解旋酶与实验室遗传学与生理学2之间的相互作用。在存在poly(I:C)的情况下,CFP-视黄酸诱导基因I:YFP-视黄酸诱导基因I细胞、CFP-黑色素瘤分化相关基因5:YFP-黑色素瘤分化相关基因5细胞和CFP-黑色素瘤分化相关基因5:YFP-实验室遗传学与生理学2细胞中的线粒体具有更高的FRET效率,这表明RNA使这些蛋白以比不存在poly(I:C)时形成的高阶复合体更高的浓度在线粒体上积累。然而,在存在poly(I:C)的情况下,CFP-实验室遗传学与生理学2:YFP-实验室遗传学与生理学2细胞中的线粒体具有较低的FRET信号,这表明实验室遗传学与生理学2寡聚体分散,以便实验室遗传学与生理学2能够结合黑色素瘤分化相关基因5。数据支持一种新模型,即实验室遗传学与生理学2-黑色素瘤分化相关基因5寡聚体将非结构蛋白3转运到线粒体以阻断抗病毒信号传导。

相似文献

1
Quantitative microspectroscopic imaging reveals viral and cellular RNA helicase interactions in live cells.
J Biol Chem. 2017 Jul 7;292(27):11165-11177. doi: 10.1074/jbc.M117.777045. Epub 2017 May 8.
2
MDA5 and LGP2 acts as a key regulator though activating NF-κB and IRF3 in RLRs signaling of mandarinfish.
Fish Shellfish Immunol. 2019 Mar;86:1114-1122. doi: 10.1016/j.fsi.2018.12.054. Epub 2018 Dec 28.
3
Analysis of Porcine RIG-I Like Receptors Revealed the Positive Regulation of RIG-I and MDA5 by LGP2.
Front Immunol. 2021 May 18;12:609543. doi: 10.3389/fimmu.2021.609543. eCollection 2021.
4
Viral RNA recognition by LGP2 and MDA5, and activation of signaling through step-by-step conformational changes.
Nucleic Acids Res. 2020 Nov 18;48(20):11664-11674. doi: 10.1093/nar/gkaa935.
5
Spatiotemporal dynamics of innate immune signaling via RIG-I-like receptors.
Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15778-15788. doi: 10.1073/pnas.1921861117. Epub 2020 Jun 22.
6
LGP2 binds to PACT to regulate RIG-I- and MDA5-mediated antiviral responses.
Sci Signal. 2019 Oct 1;12(601):eaar3993. doi: 10.1126/scisignal.aar3993.
9
LGP2 synergy with MDA5 in RLR-mediated RNA recognition and antiviral signaling.
Cytokine. 2015 Aug;74(2):198-206. doi: 10.1016/j.cyto.2015.02.010. Epub 2015 Mar 18.
10
LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses.
Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1512-7. doi: 10.1073/pnas.0912986107. Epub 2010 Jan 8.

引用本文的文献

1
Damage-associated molecular patterns (DAMPs) in diseases: implications for therapy.
Mol Biomed. 2025 Aug 29;6(1):60. doi: 10.1186/s43556-025-00305-3.
3
Ab Initio Derivation of the FRET Equations Resolves Old Puzzles and Suggests Measurement Strategies.
Biophys J. 2019 Apr 2;116(7):1313-1327. doi: 10.1016/j.bpj.2019.02.016. Epub 2019 Feb 26.
5
Role of the Conserved DECH-Box Cysteine in Coupling Hepatitis C Virus Helicase-Catalyzed ATP Hydrolysis to RNA Unwinding.
Biochemistry. 2018 Oct 30;57(43):6247-6255. doi: 10.1021/acs.biochem.8b00796. Epub 2018 Oct 16.
6
Innate immune sensor LGP2 is cleaved by the Leader protease of foot-and-mouth disease virus.
PLoS Pathog. 2018 Jun 29;14(6):e1007135. doi: 10.1371/journal.ppat.1007135. eCollection 2018 Jun.

本文引用的文献

1
Quaternary structure of the yeast pheromone receptor Ste2 in living cells.
Biochim Biophys Acta Biomembr. 2017 Sep;1859(9 Pt A):1456-1464. doi: 10.1016/j.bbamem.2016.12.008. Epub 2016 Dec 16.
2
Quaternary structures of opsin in live cells revealed by FRET spectrometry.
Biochem J. 2016 Nov 1;473(21):3819-3836. doi: 10.1042/BCJ20160422. Epub 2016 Sep 13.
3
Structural Analysis of dsRNA Binding to Anti-viral Pattern Recognition Receptors LGP2 and MDA5.
Mol Cell. 2016 May 19;62(4):586-602. doi: 10.1016/j.molcel.2016.04.021.
4
Comparative analysis of viral RNA signatures on different RIG-I-like receptors.
Elife. 2016 Mar 24;5:e11275. doi: 10.7554/eLife.11275.
5
Fully quantified spectral imaging reveals in vivo membrane protein interactions.
Integr Biol (Camb). 2016 Feb;8(2):216-29. doi: 10.1039/c5ib00202h. Epub 2016 Jan 20.
6
Structure of the eukaryotic MCM complex at 3.8 Å.
Nature. 2015 Aug 13;524(7564):186-91. doi: 10.1038/nature14685. Epub 2015 Jul 29.
7
Emerging complexity and new roles for the RIG-I-like receptors in innate antiviral immunity.
Virol Sin. 2015 Jun;30(3):163-73. doi: 10.1007/s12250-015-3604-5. Epub 2015 May 20.
8
MAVS Coordination of Antiviral Innate Immunity.
J Virol. 2015 Jul;89(14):6974-7. doi: 10.1128/JVI.01918-14. Epub 2015 May 6.
10
LGP2 synergy with MDA5 in RLR-mediated RNA recognition and antiviral signaling.
Cytokine. 2015 Aug;74(2):198-206. doi: 10.1016/j.cyto.2015.02.010. Epub 2015 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验