Corby M J, Stoneman Michael R, Biener Gabriel, Paprocki Joel D, Kolli Rajesh, Raicu Valerica, Frick David N
From the Departments of Chemistry and Biochemistry.
Physics, and.
J Biol Chem. 2017 Jul 7;292(27):11165-11177. doi: 10.1074/jbc.M117.777045. Epub 2017 May 8.
Human cells detect RNA viruses through a set of helicases called RIG-I-like receptors (RLRs) that initiate the interferon response via a mitochondrial signaling complex. Many RNA viruses also encode helicases, which are sometimes covalently linked to proteases that cleave signaling proteins. One unresolved question is how RLRs interact with each other and with viral proteins in cells. This study examined the interactions among the hepatitis C virus (HCV) helicase and RLR helicases in live cells with quantitative microspectroscopic imaging (Q-MSI), a technique that determines FRET efficiency and subcellular donor and acceptor concentrations. HEK293T cells were transfected with various vector combinations to express cyan fluorescent protein (CFP) or YFP fused to either biologically active HCV helicase or one RLR ( RIG-I, MDA5, or LGP2), expressed in the presence or absence of polyinosinic-polycytidylic acid (poly(I:C)), which elicits RLR accumulation at mitochondria. Q-MSI confirmed previously reported RLR interactions and revealed an interaction between HCV helicase and LGP2. Mitochondria in CFP-RIG-I:YFP-RIG-I cells, CFP-MDA5:YFP-MDA5 cells, and CFP-MDA5:YFP-LGP2 cells had higher FRET efficiencies in the presence of poly(I:C), indicating that RNA causes these proteins to accumulate at mitochondria in higher-order complexes than those formed in the absence of poly(I:C). However, mitochondria in CFP-LGP2:YFP-LGP2 cells had lower FRET signal in the presence of poly(I:C), suggesting that LGP2 oligomers disperse so that LGP2 can bind MDA5. Data support a new model where an LGP2-MDA5 oligomer shuttles NS3 to the mitochondria to block antiviral signaling.
人类细胞通过一组称为视黄酸诱导基因I样受体(RLRs)的解旋酶来检测RNA病毒,这些解旋酶通过线粒体信号复合体启动干扰素反应。许多RNA病毒也编码解旋酶,这些解旋酶有时与切割信号蛋白的蛋白酶共价连接。一个尚未解决的问题是RLRs在细胞中如何相互作用以及与病毒蛋白相互作用。本研究利用定量显微光谱成像(Q-MSI)技术,在活细胞中检测丙型肝炎病毒(HCV)解旋酶与RLR解旋酶之间的相互作用,该技术可确定荧光共振能量转移(FRET)效率以及亚细胞供体和受体浓度。用各种载体组合转染HEK293T细胞,以表达与具有生物活性的HCV解旋酶或一种RLR(视黄酸诱导基因I、黑色素瘤分化相关基因5或实验室遗传学与生理学2)融合的青色荧光蛋白(CFP)或黄色荧光蛋白(YFP),在存在或不存在聚肌苷酸-聚胞苷酸(poly(I:C))的情况下表达,poly(I:C)会引发RLR在线粒体上的积累。Q-MSI证实了先前报道的RLR相互作用,并揭示了HCV解旋酶与实验室遗传学与生理学2之间的相互作用。在存在poly(I:C)的情况下,CFP-视黄酸诱导基因I:YFP-视黄酸诱导基因I细胞、CFP-黑色素瘤分化相关基因5:YFP-黑色素瘤分化相关基因5细胞和CFP-黑色素瘤分化相关基因5:YFP-实验室遗传学与生理学2细胞中的线粒体具有更高的FRET效率,这表明RNA使这些蛋白以比不存在poly(I:C)时形成的高阶复合体更高的浓度在线粒体上积累。然而,在存在poly(I:C)的情况下,CFP-实验室遗传学与生理学2:YFP-实验室遗传学与生理学2细胞中的线粒体具有较低的FRET信号,这表明实验室遗传学与生理学2寡聚体分散,以便实验室遗传学与生理学2能够结合黑色素瘤分化相关基因5。数据支持一种新模型,即实验室遗传学与生理学2-黑色素瘤分化相关基因5寡聚体将非结构蛋白3转运到线粒体以阻断抗病毒信号传导。