McCarthy Cian P, van Kimmenade Roland R J, Gaggin Hanna K, Simon Mandy L, Ibrahim Nasrien E, Gandhi Parul, Kelly Noreen, Motiwala Shweta R, Belcher Arianna M, Harisiades Jamie, Magaret Craig A, Rhyne Rhonda F, Januzzi James L
Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.
Division of Cardiology, Radboud University Medical Centre, Nijmegen, The Netherlands.
Am J Cardiol. 2017 Jul 1;120(1):25-32. doi: 10.1016/j.amjcard.2017.03.265. Epub 2017 Apr 12.
We sought to develop a multiple biomarker approach for prediction of incident major adverse cardiac events (MACE; composite of cardiovascular death, myocardial infarction, and stroke) in patients referred for coronary angiography. In a 649-participant training cohort, predictors of MACE within 1 year were identified using least-angle regression; over 50 clinical variables and 109 biomarkers were analyzed. Predictive models were generated using least absolute shrinkage and selection operator with logistic regression. A score derived from the final model was developed and evaluated with a 278-patient validation set during a median of 3.6 years follow-up. The scoring system consisted of N-terminal pro B-type natriuretic peptide (NT-proBNP), kidney injury molecule-1, osteopontin, and tissue inhibitor of metalloproteinase-1; no clinical variables were retained in the predictive model. In the validation cohort, each biomarker improved model discrimination or calibration for MACE; the final model had an area under the curve (AUC) of 0.79 (p <0.001), higher than AUC for clinical variables alone (0.75). In net reclassification improvement analyses, addition of other markers to NT-proBNP resulted in significant improvement (net reclassification improvement 0.45; p = 0.008). At the optimal score cutoff, we found 64% sensitivity, 76% specificity, 28% positive predictive value, and 93% negative predictive value for 1-year MACE. Time-to-first MACE was shorter in those with an elevated score (p <0.001); such risk extended to at least to 4 years. In conclusion, in a cohort of patients who underwent coronary angiography, we describe a novel multiple biomarker score for incident MACE within 1 year (NCT00842868).
我们试图开发一种多生物标志物方法,用于预测接受冠状动脉造影患者发生主要不良心脏事件(MACE;心血管死亡、心肌梗死和中风的综合)的风险。在一个649名参与者的训练队列中,使用最小角回归法确定1年内MACE的预测因素;分析了50多个临床变量和109种生物标志物。使用最小绝对收缩和选择算子结合逻辑回归生成预测模型。在中位随访3.6年期间,使用一个278例患者的验证集对最终模型得出的评分进行开发和评估。该评分系统由N末端B型脑钠肽前体(NT-proBNP)、肾损伤分子-1、骨桥蛋白和基质金属蛋白酶-1组织抑制剂组成;预测模型中未保留临床变量。在验证队列中,每种生物标志物都改善了模型对MACE的辨别或校准能力;最终模型的曲线下面积(AUC)为0.79(p<0.001),高于仅临床变量的AUC(0.75)。在净重新分类改善分析中,在NT-proBNP基础上添加其他标志物可带来显著改善(净重新分类改善0.45;p=0.008)。在最佳评分临界值时,我们发现1年MACE的敏感性为64%,特异性为76%,阳性预测值为28%,阴性预测值为93%。评分升高者首次发生MACE的时间较短(p<0.001);这种风险至少持续到4年。总之,在一组接受冠状动脉造影的患者中,我们描述了一种用于预测1年内发生MACE的新型多生物标志物评分(NCT00842868)。