Suppr超能文献

2004 - 2015年期间日本人类诺如病毒GII.2基因型的RNA依赖RNA聚合酶和衣壳基因的分子进化

Molecular Evolution of the RNA-Dependent RNA Polymerase and Capsid Genes of Human Norovirus Genotype GII.2 in Japan during 2004-2015.

作者信息

Mizukoshi Fuminori, Nagasawa Koo, Doan Yen H, Haga Kei, Yoshizumi Shima, Ueki Yo, Shinohara Michiyo, Ishikawa Mariko, Sakon Naomi, Shigemoto Naoki, Okamoto-Nakagawa Reiko, Ochi Akie, Murakami Koichi, Ryo Akihide, Suzuki Yoshiyuki, Katayama Kazuhiko, Kimura Hirokazu

机构信息

Department of Microbiology, Tochigi Prefectural Institute of Public Health and Environmental ScienceUtsunomiya-shi, Japan.

Infectious Disease Surveillance Center, National Institute of Infectious DiseasesMusashimurayama-shi, Japan.

出版信息

Front Microbiol. 2017 Apr 25;8:705. doi: 10.3389/fmicb.2017.00705. eCollection 2017.

Abstract

The RNA-dependent RNA polymerase () and capsid () genes of 51 GII.2 human norovirus (HuNoV) strains collected during the period of 2004-2015 in Japan were analyzed. Full-length analyses of the genes were performed using next-generation sequencing. Based on the gene sequences, we constructed the time-scale evolutionary trees by Bayesian Markov chain Monte Carlo methods. Time-scale phylogenies showed that the and genes evolved uniquely and independently. Four genotypes of GII.2 (major types: GII.P2-GII.2 and GII.P16-GII.2) were detected. A common ancestor of the GII.2 gene existed until about 1956. The evolutionary rates of the genes were high (over 10 substitutions/site/year). Moreover, the gene evolution may depend on the gene. Based on these results, we hypothesized that transfer of the gene accelerated the gene evolution of HuNoV genotype GII.2. Consequently, recombination between ORF1 (polymerase) and ORF2 (capsid) might promote changes of GII.2 antigenicity.

摘要

对2004年至2015年期间在日本收集的51株GII.2型人诺如病毒(HuNoV)的RNA依赖性RNA聚合酶()和衣壳()基因进行了分析。使用下一代测序技术对这些基因进行了全长分析。基于基因序列,我们通过贝叶斯马尔可夫链蒙特卡罗方法构建了时间尺度进化树。时间尺度系统发育分析表明,和基因独特且独立地进化。检测到四种GII.2基因型(主要类型:GII.P2-GII.2和GII.P16-GII.2)。GII.2基因的一个共同祖先一直存在到大约1956年。这些基因的进化速率很高(超过10个替换/位点/年)。此外,基因进化可能依赖于基因。基于这些结果,我们推测基因的转移加速了HuNoV基因型GII.2的基因进化。因此,ORF1(聚合酶)和ORF2(衣壳)之间的重组可能促进GII.2抗原性的变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee6/5403926/c9454dd2da30/fmicb-08-00705-g0001.jpg

相似文献

3
Molecular Evolutionary Analyses of the RNA-Dependent RNA Polymerase Region in Norovirus Genogroup II.
Front Microbiol. 2018 Dec 18;9:3070. doi: 10.3389/fmicb.2018.03070. eCollection 2018.
4
Genetic Analysis of Human Norovirus Strains in Japan in 2016-2017.
Front Microbiol. 2018 Jan 18;9:1. doi: 10.3389/fmicb.2018.00001. eCollection 2018.
5
Molecular Evolution of the Gene in Human Norovirus GII.4 Variants in 1974-2015.
Front Microbiol. 2017 Dec 5;8:2399. doi: 10.3389/fmicb.2017.02399. eCollection 2017.
6
Evolutionary analyses of emerging GII.2[P16] and GII.4 Sydney [P16] noroviruses.
Virus Evol. 2022 Apr 4;8(1):veac030. doi: 10.1093/ve/veac030. eCollection 2022.
9
Evolutionary Analysis of the and RNA-Dependent RNA Polymerase Regions of Human Norovirus GII.P17-GII.17 in 2013-2017.
Front Microbiol. 2019 Sep 27;10:2189. doi: 10.3389/fmicb.2019.02189. eCollection 2019.
10
Early evolution and transmission of GII.P16-GII.2 norovirus in China.
G3 (Bethesda). 2022 Nov 4;12(11). doi: 10.1093/g3journal/jkac250.

引用本文的文献

4
Norovirus strains in patients with acute gastroenteritis in rural and low-income urban areas in northern Brazil.
Arch Virol. 2021 Mar;166(3):905-913. doi: 10.1007/s00705-020-04944-5. Epub 2021 Jan 19.
5
Molecular evolution of the capsid () region in human norovirus genogroup II genotype 3.
Heliyon. 2020 May 3;6(5):e03835. doi: 10.1016/j.heliyon.2020.e03835. eCollection 2020 May.
6
Emergence of norovirus strains: A tale of two genes.
Virus Evol. 2019 Nov 25;5(2):vez048. doi: 10.1093/ve/vez048. eCollection 2019 Jul.
7
Evolutionary Analysis of the and RNA-Dependent RNA Polymerase Regions of Human Norovirus GII.P17-GII.17 in 2013-2017.
Front Microbiol. 2019 Sep 27;10:2189. doi: 10.3389/fmicb.2019.02189. eCollection 2019.
8
Variation of human norovirus GII genotypes detected in Ibaraki, Japan, during 2012-2018.
Gut Pathog. 2019 May 24;11:26. doi: 10.1186/s13099-019-0303-z. eCollection 2019.
9
Genetic Analysis of an Emerging GII.P2-GII.2 Norovirus Associated with a 2016 Outbreak of Acute Gastroenteritis in China.
Virol Sin. 2019 Feb;34(1):111-114. doi: 10.1007/s12250-019-00084-6. Epub 2019 Feb 6.
10
Molecular Evolutionary Analyses of the RNA-Dependent RNA Polymerase Region in Norovirus Genogroup II.
Front Microbiol. 2018 Dec 18;9:3070. doi: 10.3389/fmicb.2018.03070. eCollection 2018.

本文引用的文献

1
Molecular evolution of the capsid gene in human norovirus genogroup II.
Sci Rep. 2016 Jul 7;6:29400. doi: 10.1038/srep29400.
2
Molecular Evolution of the Capsid Gene in Norovirus Genogroup I.
Sci Rep. 2015 Sep 4;5:13806. doi: 10.1038/srep13806.
4
Proposal for a unified norovirus nomenclature and genotyping.
Arch Virol. 2013 Oct;158(10):2059-68. doi: 10.1007/s00705-013-1708-5. Epub 2013 Apr 25.
6
An automated genotyping tool for enteroviruses and noroviruses.
J Clin Virol. 2011 Jun;51(2):121-5. doi: 10.1016/j.jcv.2011.03.006. Epub 2011 Apr 21.
7
Rapid evolution of pandemic noroviruses of the GII.4 lineage.
PLoS Pathog. 2010 Mar 26;6(3):e1000831. doi: 10.1371/journal.ppat.1000831.
8
BEAST: Bayesian evolutionary analysis by sampling trees.
BMC Evol Biol. 2007 Nov 8;7:214. doi: 10.1186/1471-2148-7-214.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验