Funcke Sandra, Sauerlaender Sven, Pinnschmidt Hans O, Saugel Bernd, Bremer Kai, Reuter Daniel A, Nitzschke Rainer
From the Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine (S.F., S.S., B.S., K.B., D.A.R., R.N.), and Institute of Medical Biometry and Epidemiology (H.O.P.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Anesthesiology. 2017 Aug;127(2):272-283. doi: 10.1097/ALN.0000000000001670.
This study compares the analgesic indices Analgesia Nociception Index (heart rate variability), Surgical Pleth Index (photoplethysmography), and pupillary dilatation, to heart rate, mean arterial pressure, and bispectral index, with regard to diagnostic accuracy and prediction probability for nociceptive response. The primary endpoint was the correlation between Δ values and the remifentanil dose administered.
We anesthetized 38 patients with propofol and increasing doses of remifentanil and applied standardized tetanic and intracutaneous electrical painful stimulations on each analgesic level. Baseline and Δ values of the Analgesia Nociception Index, the Surgical Pleth Index, pupillary dilatation, heart rate, mean arterial pressure, and bispectral index and their relation to remifentanil doses were analyzed by receiver operating characteristic curves, prediction probability (PK), and mixed-model analysis.
Under propofol sedation, sensitivity and specificity of the Analgesia Nociception Index (PK = 0.98), the Surgical Pleth Index (PK = 0.87), and pupillary dilatation (PK = 0.98) for detecting both painful stimulations were high compared to heart rate (PK = 0.74), mean arterial pressure (PK = 0.75), and bispectral index (PK = 0.55). Baseline values had limited prediction probability toward the nociceptive response (Analgesia Nociception Index: PK = 0.7; Surgical Pleth Index: PK = 0.63; pupillary dilatation: PK = 0.67; and bispectral index: PK = 0.67). The remifentanil dose had an effect (P < 0.001) on all parameters except for bispectral index (P = 0.216).
The Analgesia Nociception Index, the Surgical Pleth Index, and pupillary dilatation are superior in detecting painful stimulations compared to heart rate and mean arterial pressure but had limited predictive value. These effects are attenuated by increasing dosages of remifentanil. Our data confirm that bispectral index is not a marker of analgesia.
本研究比较了镇痛指数(镇痛伤害感受指数(心率变异性)、手术容积指数(光电容积描记法)和瞳孔散大)与心率、平均动脉压及脑电双频指数在伤害性反应诊断准确性和预测概率方面的差异。主要终点是Δ值与瑞芬太尼给药剂量之间的相关性。
我们用丙泊酚和递增剂量的瑞芬太尼麻醉了38例患者,并在每个镇痛水平上施加标准化的强直和皮内电刺激。通过受试者工作特征曲线、预测概率(PK)和混合模型分析,分析了镇痛伤害感受指数、手术容积指数、瞳孔散大、心率、平均动脉压和脑电双频指数的基线值和Δ值及其与瑞芬太尼剂量的关系。
在丙泊酚镇静下,与心率(PK = 0.74)、平均动脉压(PK = 0.75)和脑电双频指数(PK = 0.55)相比,镇痛伤害感受指数(PK = 0.98)、手术容积指数(PK = 0.87)和瞳孔散大(PK = 0.98)检测两种疼痛刺激的敏感性和特异性较高。基线值对伤害性反应的预测概率有限(镇痛伤害感受指数:PK = 0.7;手术容积指数:PK = 0.63;瞳孔散大:PK = 0.67;脑电双频指数:PK = 0.67)。瑞芬太尼剂量对除脑电双频指数外的所有参数均有影响(P < 0.001)(P = 0.216)。
与心率和平均动脉压相比,镇痛伤害感受指数、手术容积指数和瞳孔散大在检测疼痛刺激方面更具优势,但预测价值有限。随着瑞芬太尼剂量的增加,这些作用会减弱。我们的数据证实脑电双频指数不是镇痛的标志物。