García-Villegas Rodolfo, Camacho-Villasana Yolanda, Shingú-Vázquez Miguel Ángel, Cabrera-Orefice Alfredo, Uribe-Carvajal Salvador, Fox Thomas D, Pérez-Martínez Xochitl
From the Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
the Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
J Biol Chem. 2017 Jun 30;292(26):10912-10925. doi: 10.1074/jbc.M116.773077. Epub 2017 May 10.
Cytochrome oxidase (CO) is the last electron acceptor in the respiratory chain. The CO core is formed by mitochondrial DNA-encoded Cox1, Cox2, and Cox3 subunits. Cox1 synthesis is highly regulated; for example, if CO assembly is blocked, Cox1 synthesis decreases. Mss51 activates translation of mRNA and interacts with Cox1 protein in high-molecular-weight complexes (COA complexes) to form the Cox1 intermediary assembly module. Thus, Mss51 coordinates both Cox1 synthesis and assembly. We previously reported that the last 15 residues of the Cox1 C terminus regulate Cox1 synthesis by modulating an interaction of Mss51 with Cox14, another component of the COA complexes. Here, using site-directed mutagenesis of the mitochondrial gene from , we demonstrate that mutations P521A/P522A and V524E disrupt the regulatory role of the Cox1 C terminus. These mutations, as well as C terminus deletion (Cox1ΔC15), reduced binding of Mss51 and Cox14 to COA complexes. Mss51 was enriched in a translationally active form that maintains full Cox1 synthesis even if CO assembly is blocked in these mutants. Moreover, Cox1ΔC15, but not Cox1-P521A/P522A and Cox1-V524E, promoted formation of aberrant supercomplexes in CO assembly mutants lacking Cox2 or Cox4 subunits. The aberrant supercomplex formation depended on the presence of cytochrome and Cox3, supporting the idea that supercomplex assembly factors associate with Cox3 and demonstrating that supercomplexes can be formed even if CO is inactive and not fully assembled. Our results indicate that the Cox1 C-terminal end is a key regulator of CO biogenesis and that it is important for supercomplex formation/stability.
细胞色素氧化酶(CO)是呼吸链中的最后一个电子受体。CO核心由线粒体DNA编码的Cox1、Cox2和Cox3亚基组成。Cox1的合成受到高度调控;例如,如果CO组装受阻,Cox1的合成会减少。Mss51激活mRNA的翻译,并在高分子量复合物(COA复合物)中与Cox1蛋白相互作用,形成Cox1中间组装模块。因此,Mss51协调Cox1的合成和组装。我们之前报道过,Cox1 C末端的最后15个残基通过调节Mss51与COA复合物的另一个组分Cox14的相互作用来调控Cox1的合成。在这里,我们利用来自[具体物种]的线粒体基因进行定点诱变,证明P521A/P522A和V524E突变破坏了Cox1 C末端的调控作用。这些突变以及C末端缺失(Cox1ΔC15)减少了Mss51和Cox14与COA复合物的结合。在这些突变体中,即使CO组装受阻,Mss51也以翻译活性形式富集,从而维持Cox1的完全合成。此外,Cox1ΔC15,但不是Cox1-P521A/P522A和Cox1-V524E,在缺乏Cox2或Cox4亚基的CO组装突变体中促进了异常超复合物的形成。异常超复合物的形成依赖于细胞色素和Cox3的存在,这支持了超复合物组装因子与Cox3相关联的观点,并表明即使CO无活性且未完全组装,也能形成超复合物。我们的结果表明,Cox1 C末端是CO生物合成的关键调节因子,对超复合物的形成/稳定性很重要。