Suppr超能文献

作为一种重要药物性质的苯并恶嗪氧化行为的定量构效关系研究

QSAR Studying of Oxidation Behavior of Benzoxazines as an Important Pharmaceutical Property.

作者信息

Baher Elham, Darzi Naser

机构信息

Faculty of science, Department of chemistry, Golestan University, Gorgan, Iran.

Faculty of science, Department of chemistry, Azad University of Mashad, Mashad, Iran.

出版信息

Iran J Pharm Res. 2017 Winter;16(1):146-157.

Abstract

In this work the electrooxidation half-wave potentials of some Benzoxazines were predicted from their structural molecular descriptors by using quantitative structure-property relationship (QSAR) approaches. The dataset consist the half-wave potential of 40 benzoxazine derivatives which were obtained by DC-polarography. Descriptors which were selected by stepwise multiple selection procedure are: HOMO energy, partial positive surface area, maximum valency of carbon atom, relative number of hydrogen atoms and maximum electrophilic reaction index for nitrogen atom. These descriptors were used for development of multiple linear regression (MLR) and artificial neural network (ANN) models. The statistical parameters of MLR model are standard errors of 0.016 and 0.018 for training and test sets, respectively. Also, these values are 0.012 and 0.017 for training and test sets of ANN model, respectively. The predictive power of these models was further examined by leave-eight-out cross validation procedure. The obtained statistical parameters are Q = 0.920 and SPRESS = 0.020 for MLR model and Q = 0.949 and SPRESS = 0.015 for ANN model, which reveals the superiority of ANN over MLR model. Moreover, the results of sensitivity analysis on ANN model indicate that the order of importance of descriptors is: Relative number of H atom > HOMO energy > Maximum electrophyl reaction index for N atom > Partial positive surface area (order-3) > maximum valency of C atom.

摘要

在这项工作中,通过使用定量结构-性质关系(QSAR)方法,从一些苯并恶嗪的结构分子描述符预测了它们的电氧化半波电位。数据集包含通过直流极谱法获得的40种苯并恶嗪衍生物的半波电位。通过逐步多重选择程序选择的描述符有:最高占据分子轨道(HOMO)能量、部分正表面积、碳原子的最大化合价、氢原子的相对数量以及氮原子的最大亲电反应指数。这些描述符用于开发多元线性回归(MLR)模型和人工神经网络(ANN)模型。MLR模型的统计参数分别为训练集和测试集的标准误差0.016和0.018。同样,ANN模型训练集和测试集的这些值分别为0.012和0.017。通过留八法交叉验证程序进一步检验了这些模型的预测能力。对于MLR模型,获得的统计参数为Q = 0.920和预测残差平方和(SPRESS)= 0.020,对于ANN模型为Q = 0.949和SPRESS = 0.015,这揭示了ANN模型优于MLR模型。此外,对ANN模型的敏感性分析结果表明,描述符重要性顺序为:氢原子相对数量>最高占据分子轨道(HOMO)能量>氮原子的最大亲电反应指数>部分正表面积(三阶)>碳原子的最大化合价。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5e7/5423242/bc414124f6ba/ijpr-16-146-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验