Suppr超能文献

深入了解 TRAF2 C 端结构域与脂筏微域的相互作用。

New insight into the interaction of TRAF2 C-terminal domain with lipid raft microdomains.

机构信息

Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.

Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; Center NAST, Nanoscience, Nanotechnology, Innovative Instrumentation, University of Rome Tor Vergata, 00133 Rome, Italy.

出版信息

Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Sep;1862(9):813-822. doi: 10.1016/j.bbalip.2017.05.003. Epub 2017 May 9.

Abstract

In this study we provide the first evidence of the interaction of a truncated-TRAF2 with lipid raft microdomains. We have analyzed this interaction by measuring the diffusion coefficient of the protein in large and giant unilamellar vesicles (LUVs and GUVs, respectively) obtained both from synthetic lipid mixtures and from natural extracts. Steady-state fluorescence measurements performed with synthetic vesicles indicate that this truncated form of TRAF2 displays a tighter binding to raft-like LUVs with respect to the control (POPC-containing LUVs), and that this process depends on the protein oligomeric state. Generalized Polarization measurements and spectral phasor analysis revealed that truncated-TRAF2 affects the membrane fluidity, especially when vesicles are heated up at physiological temperature. The addition of nanomolar concentration of TRAF2 in GUVs also seems to exert a mechanical action, as demonstrated by the formation of intraluminal vesicles, a process in which ganglioside GM1 plays a crucial role.

摘要

在这项研究中,我们首次提供了截断型 TRAF2 与脂筏微区相互作用的证据。我们通过测量蛋白在大单层囊泡(LUVs)和巨型单层囊泡(GUVs)中的扩散系数来分析这种相互作用,这些囊泡分别来自合成脂质混合物和天然提取物。用合成囊泡进行的稳态荧光测量表明,与对照(含有 POPC 的 LUVs)相比,这种截断形式的 TRAF2 与类似筏的 LUVs 具有更紧密的结合,并且该过程取决于蛋白的寡聚状态。广义偏振测量和光谱相分析表明,截断型 TRAF2 会影响膜的流动性,尤其是当囊泡在生理温度下加热时。在 GUVs 中添加纳摩尔浓度的 TRAF2 似乎也会产生机械作用,这一点可以通过形成管腔囊泡来证明,这个过程中神经节苷脂 GM1 起着关键作用。

相似文献

1
New insight into the interaction of TRAF2 C-terminal domain with lipid raft microdomains.
Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Sep;1862(9):813-822. doi: 10.1016/j.bbalip.2017.05.003. Epub 2017 May 9.
2
Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes.
Biochim Biophys Acta. 2012 Jul;1818(7):1777-84. doi: 10.1016/j.bbamem.2012.03.007.
4
Studying the TRAF2 binding to model membranes: The role of subunits dissociation.
Biotechnol Appl Biochem. 2018 Jan;65(1):38-45. doi: 10.1002/bab.1615.
5
Amyloid-β Interactions with Lipid Rafts in Biomimetic Systems: A Review of Laboratory Methods.
Methods Mol Biol. 2021;2187:47-86. doi: 10.1007/978-1-0716-0814-2_4.
6
Lipid rafts reconstituted in model membranes.
Biophys J. 2001 Mar;80(3):1417-28. doi: 10.1016/S0006-3495(01)76114-0.
7
Effects of membrane interaction and aggregation of amyloid β-peptide on lipid mobility and membrane domain structure.
Phys Chem Chem Phys. 2013 Jun 21;15(23):8929-39. doi: 10.1039/c3cp44517h. Epub 2013 Mar 21.
8
Visualization of lipid domain-specific protein sorting in giant unilamellar vesicles.
Methods Mol Biol. 2010;606:115-26. doi: 10.1007/978-1-60761-447-0_10.
9
The state of lipid rafts: from model membranes to cells.
Annu Rev Biophys Biomol Struct. 2003;32:257-83. doi: 10.1146/annurev.biophys.32.110601.142439. Epub 2003 Jan 16.
10
Lo/Ld phase coexistence modulation induced by GM1.
Biochim Biophys Acta. 2014 Aug;1838(8):2105-14. doi: 10.1016/j.bbamem.2014.05.002. Epub 2014 May 13.

引用本文的文献

1
In silico study of cytochrome-C binding to a cardiolipin-containing membrane.
Eur Biophys J. 2025 Jul 25. doi: 10.1007/s00249-025-01783-7.
2
Inflammation and cancer cell survival: TRAF2 as a key player.
Cell Death Dis. 2025 Apr 14;16(1):292. doi: 10.1038/s41419-025-07609-w.

本文引用的文献

1
The key role played by charge in the interaction of cytochrome c with cardiolipin.
J Biol Inorg Chem. 2017 Jan;22(1):19-29. doi: 10.1007/s00775-016-1404-5. Epub 2016 Nov 9.
2
TNFR-Associated Factor-2 (TRAF2): Not Only a Trimer.
Biochemistry. 2015 Oct 13;54(40):6153-61. doi: 10.1021/acs.biochem.5b00674. Epub 2015 Sep 30.
3
TRAF2 recruitment via T61 in CD30 drives NFκB activation and enhances hESC survival and proliferation.
Mol Biol Cell. 2015 Mar 1;26(5):993-1006. doi: 10.1091/mbc.E14-08-1290. Epub 2015 Jan 7.
6
The unfolded protein response in virus infections.
Front Microbiol. 2014 Sep 30;5:518. doi: 10.3389/fmicb.2014.00518. eCollection 2014.
7
Lo/Ld phase coexistence modulation induced by GM1.
Biochim Biophys Acta. 2014 Aug;1838(8):2105-14. doi: 10.1016/j.bbamem.2014.05.002. Epub 2014 May 13.
9
A three-part signal governs differential processing of Gli1 and Gli3 proteins by the proteasome.
J Biol Chem. 2011 Nov 11;286(45):39051-8. doi: 10.1074/jbc.M111.274993. Epub 2011 Sep 15.
10
Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature.
Biochim Biophys Acta. 2011 Nov;1808(11):2761-71. doi: 10.1016/j.bbamem.2011.07.022. Epub 2011 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验