用于哺乳动物细胞系功能研究的通用且精确的基因靶向策略。
Versatile and precise gene-targeting strategies for functional studies in mammalian cell lines.
作者信息
Wassef M, Luscan A, Battistella A, Le Corre S, Li H, Wallace M R, Vidaud M, Margueron R
机构信息
Institut Curie, PSL Research University, 75005 Paris, France; INSERM U934, Paris, France; CNRS UMR3215, Paris, France.
INSERM UMR_S745 et EA7331, Université Paris Descartes, Sorbonne Paris Cité, Facultée des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France; Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France.
出版信息
Methods. 2017 May 15;121-122:45-54. doi: 10.1016/j.ymeth.2017.05.003. Epub 2017 May 10.
The advent of programmable nucleases such as ZFNs, TALENs and CRISPR/Cas9 has brought the power of genetic manipulation to widely used model systems. In mammalian cells, nuclease-mediated DNA double strand break is mainly repaired through the error-prone non-homologous end-joining (NHEJ) repair pathway, eventually leading to accumulation of small deletions or insertions (indels) that can inactivate gene function. However, due to the variable size of the indels and the polyploid status of many cell lines (e.g., cancer-derived cells), obtaining a knockout usually requires lengthy screening and characterization procedures. Given the more precise type of modifications that can be introduced upon homology-directed repair (HDR), we have developed HDR-based gene-targeting strategies that greatly facilitate the process of knockout generation in cell lines. To generate reversible knockouts (R-KO), a selectable promoter-less STOP cassette is inserted in an intron, interrupting transcription. Loss-of-function can be validated by RT-qPCR and is removable, enabling subsequent restoration of gene function. A variant of the R-KO procedure can be used to introduce point mutations. To generate constitutive knockouts (C-KO), an exon is targeted, which makes use of HDR-based gene disruption together with NHEJ-induced indels on non-HDR targeted allele(s). Hence the C-KO procedure greatly facilitates simultaneous inactivation of multiple alleles. Overall these genome-editing tools offer superior precision and efficiency for functional genetic approaches. We provide detailed protocols guiding in the design of targeting vectors and in the analysis and validation of gene targeting experiments.
诸如锌指核酸酶(ZFNs)、转录激活样效应因子核酸酶(TALENs)和规律成簇间隔短回文重复序列/Cas9(CRISPR/Cas9)等可编程核酸酶的出现,已将基因操作的能力引入到广泛使用的模型系统中。在哺乳动物细胞中,核酸酶介导的DNA双链断裂主要通过易出错的非同源末端连接(NHEJ)修复途径进行修复,最终导致小缺失或插入(indels)的积累,从而使基因功能失活。然而,由于indels大小可变以及许多细胞系(如癌症衍生细胞)的多倍体状态,获得基因敲除通常需要漫长的筛选和鉴定程序。鉴于同源定向修复(HDR)能够引入更精确的修饰类型,我们开发了基于HDR的基因靶向策略,极大地促进了细胞系中基因敲除的产生过程。为了产生可逆性敲除(R-KO),将一个无选择启动子的STOP盒插入内含子中,中断转录。功能丧失可通过逆转录定量聚合酶链反应(RT-qPCR)进行验证,并且该盒是可移除的,从而能够恢复基因功能。R-KO程序的一个变体可用于引入点突变。为了产生组成型敲除(C-KO),以外显子为靶点,利用基于HDR的基因破坏以及非HDR靶向等位基因上由NHEJ诱导的indels。因此,C-KO程序极大地促进了多个等位基因的同时失活。总体而言,这些基因组编辑工具为功能基因研究方法提供了更高的精度和效率。我们提供了详细的方案,指导靶向载体的设计以及基因靶向实验的分析和验证。