Suppr超能文献

铜绿假单胞菌PA14的全基因组调查揭示了乙醛酸循环途径和胞外蛋白酶在黏蛋白利用中的作用。

Genome-Wide Survey of Pseudomonas aeruginosa PA14 Reveals a Role for the Glyoxylate Pathway and Extracellular Proteases in the Utilization of Mucin.

作者信息

Flynn Jeffrey M, Phan Chi, Hunter Ryan C

机构信息

Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA.

Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA

出版信息

Infect Immun. 2017 Jul 19;85(8). doi: 10.1128/IAI.00182-17. Print 2017 Aug.

Abstract

Chronic airway infections by the opportunistic pathogen are a major cause of mortality in cystic fibrosis (CF) patients. Although this bacterium has been extensively studied for its virulence determinants, biofilm growth, and immune evasion mechanisms, comparatively little is known about the nutrient sources that sustain its growth Respiratory mucins represent a potentially abundant bioavailable nutrient source, although we have recently shown that canonical pathogens inefficiently use these host glycoproteins as a growth substrate. However, given that , particularly in its biofilm mode of growth, is thought to grow slowly , the inefficient use of mucin glycoproteins may be relevant to its persistence within the CF airways. To this end, we used whole-genome fitness analysis, combining transposon mutagenesis with high-throughput sequencing, to identify genetic determinants required for growth using intact purified mucins as a sole carbon source. Our analysis reveals a biphasic growth phenotype, during which the glyoxylate pathway and amino acid biosynthetic machinery are required for mucin utilization. Secondary analyses confirmed the simultaneous liberation and consumption of acetate during mucin degradation and revealed a central role for the extracellular proteases LasB and AprA. Together, these studies describe a molecular basis for mucin-based nutrient acquisition by and reveal a host-pathogen dynamic that may contribute to its persistence within the CF airways.

摘要

机会性病原体引起的慢性气道感染是囊性纤维化(CF)患者死亡的主要原因。尽管对这种细菌的毒力决定因素、生物膜生长和免疫逃逸机制进行了广泛研究,但对于维持其生长的营养来源却知之甚少。呼吸道粘蛋白是一种潜在丰富的可生物利用的营养来源,尽管我们最近发现典型病原体不能有效地将这些宿主糖蛋白用作生长底物。然而,鉴于(该病原体),特别是在其生物膜生长模式下,被认为生长缓慢,粘蛋白糖蛋白的低效利用可能与其在CF气道内的持续存在有关。为此,我们使用全基因组适应性分析,将转座子诱变与高通量测序相结合,以确定使用完整纯化的粘蛋白作为唯一碳源进行(该病原体)生长所需的遗传决定因素。我们的分析揭示了一种双相生长表型,在此期间,乙醛酸途径和氨基酸生物合成机制是粘蛋白利用所必需的。二次分析证实了粘蛋白降解过程中乙酸盐的同时释放和消耗,并揭示了细胞外蛋白酶LasB和AprA的核心作用。总之,这些研究描述了(该病原体)基于粘蛋白获取营养的分子基础,并揭示了一种宿主-病原体动态关系,这可能有助于其在CF气道内的持续存在。

相似文献

2
Identification of essential genes of Pseudomonas aeruginosa for its growth in airway mucus.
J Microbiol. 2017 Jan;55(1):68-74. doi: 10.1007/s12275-017-6515-3. Epub 2016 Dec 30.
3
Evidence and Role for Bacterial Mucin Degradation in Cystic Fibrosis Airway Disease.
PLoS Pathog. 2016 Aug 22;12(8):e1005846. doi: 10.1371/journal.ppat.1005846. eCollection 2016 Aug.
4
Desulfurization of mucin by Pseudomonas aeruginosa: influence of sulfate in the lungs of cystic fibrosis patients.
J Med Microbiol. 2012 Dec;61(Pt 12):1644-1653. doi: 10.1099/jmm.0.047167-0. Epub 2012 Aug 23.
5
Mucin-Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance.
Mol Microbiol. 2006 Jan;59(1):142-51. doi: 10.1111/j.1365-2958.2005.04941.x.
7
Mucin adhesion of serial cystic fibrosis airways isolates.
Front Cell Infect Microbiol. 2024 Aug 22;14:1448104. doi: 10.3389/fcimb.2024.1448104. eCollection 2024.
9
The Nutritional Environment Is Sufficient To Select Coexisting Biofilm and Quorum Sensing Mutants of Pseudomonas aeruginosa.
J Bacteriol. 2022 Mar 15;204(3):e0044421. doi: 10.1128/JB.00444-21. Epub 2022 Jan 3.
10
Effects of Mucin and DNA Concentrations in Airway Mucus on Pseudomonas aeruginosa Biofilm Recalcitrance.
mSphere. 2022 Aug 31;7(4):e0029122. doi: 10.1128/msphere.00291-22. Epub 2022 Aug 15.

引用本文的文献

1
Inflammation-like environments limit the loss of quorum sensing in .
mSystems. 2025 Aug 19;10(8):e0172224. doi: 10.1128/msystems.01722-24. Epub 2025 Jul 7.
2
Pseudomonas aeruginosa faces a fitness trade-off between mucosal colonization and antibiotic tolerance during airway infection.
Nat Microbiol. 2024 Dec;9(12):3284-3303. doi: 10.1038/s41564-024-01842-3. Epub 2024 Oct 25.
3
More than just a gel: the extracellular matrixome of .
Front Mol Biosci. 2023 Nov 13;10:1307857. doi: 10.3389/fmolb.2023.1307857. eCollection 2023.
4
Tissue remodeling by an opportunistic pathogen triggers allergic inflammation.
Immunity. 2022 May 10;55(5):895-911.e10. doi: 10.1016/j.immuni.2022.04.001. Epub 2022 Apr 27.
5
Genome-wide association study of signature genetic alterations among pseudomonas aeruginosa cystic fibrosis isolates.
PLoS Pathog. 2021 Jun 23;17(6):e1009681. doi: 10.1371/journal.ppat.1009681. eCollection 2021 Jun.
7
Elastase Contributes to the Establishment of Chronic Lung Colonization and Modulates the Immune Response in a Murine Model.
Front Microbiol. 2021 Jan 12;11:620819. doi: 10.3389/fmicb.2020.620819. eCollection 2020.
9
Airway immunometabolites fuel Pseudomonas aeruginosa infection.
Respir Res. 2020 Dec 10;21(1):326. doi: 10.1186/s12931-020-01591-x.

本文引用的文献

2
Evidence and Role for Bacterial Mucin Degradation in Cystic Fibrosis Airway Disease.
PLoS Pathog. 2016 Aug 22;12(8):e1005846. doi: 10.1371/journal.ppat.1005846. eCollection 2016 Aug.
3
The Role of Short-Chain Fatty Acids, Produced by Anaerobic Bacteria, in the Cystic Fibrosis Airway.
Am J Respir Crit Care Med. 2015 Dec 1;192(11):1314-24. doi: 10.1164/rccm.201505-0943OC.
4
Short-chain fatty acids affect cystic fibrosis airway inflammation and bacterial growth.
Eur Respir J. 2015 Oct;46(4):1033-45. doi: 10.1183/09031936.00143614. Epub 2015 May 28.
6
Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure.
J Clin Invest. 2014 Jul;124(7):3047-60. doi: 10.1172/JCI73469. Epub 2014 Jun 2.
7
Mucin inhibits Pseudomonas aeruginosa biofilm formation by significantly enhancing twitching motility.
Can J Microbiol. 2014 Mar;60(3):155-66. doi: 10.1139/cjm-2013-0570. Epub 2014 Jan 24.
8
Conditions associated with the cystic fibrosis defect promote chronic Pseudomonas aeruginosa infection.
Am J Respir Crit Care Med. 2014 Apr 1;189(7):812-24. doi: 10.1164/rccm.201312-2142OC.
9
Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms.
Nat Rev Microbiol. 2013 Jul;11(7):435-42. doi: 10.1038/nrmicro3033. Epub 2013 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验