Suppr超能文献

众包识别可能的过敏相关因素:利用众包服务进行自动假设生成与验证

Crowdsourced Identification of Possible Allergy-Associated Factors: Automated Hypothesis Generation and Validation Using Crowdsourcing Services.

作者信息

Aramaki Eiji, Shikata Shuko, Ayaya Satsuki, Kumagaya Shin-Ichiro

机构信息

Social Computing Lab, Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma, Japan.

Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan.

出版信息

JMIR Res Protoc. 2017 May 16;6(5):e83. doi: 10.2196/resprot.5851.

Abstract

BACKGROUND

Hypothesis generation is an essential task for clinical research, and it can require years of research experience to formulate a meaningful hypothesis. Recent studies have endeavored to apply crowdsourcing to generate novel hypotheses for research. In this study, we apply crowdsourcing to explore previously unknown allergy-associated factors.

OBJECTIVE

In this study, we aimed to collect and test hypotheses of unknown allergy-associated factors using a crowdsourcing service.

METHODS

Using a series of questionnaires, we asked crowdsourcing participants to provide hypotheses on associated factors for seven different allergies, and validated the candidate hypotheses with odds ratios calculated for each associated factor. We repeated this abductive validation process to identify a set of reliable hypotheses.

RESULTS

We obtained two primary findings: (1) crowdsourcing showed that 8 of the 13 known hypothesized allergy risks were statically significant; and (2) among the total of 157 hypotheses generated by the crowdsourcing service, 75 hypotheses were statistically significant allergy-associated factors, comprising the 8 known risks and 53 previously unknown allergy-associated factors. These findings suggest that there are still many topics to be examined in future allergy studies.

CONCLUSIONS

Crowdsourcing generated new hypotheses on allergy-associated factors. In the near future, clinical trials should be conducted to validate the hypotheses generated in this study.

摘要

背景

假设生成是临床研究的一项重要任务,可能需要数年的研究经验才能提出有意义的假设。最近的研究致力于应用众包来生成新的研究假设。在本研究中,我们应用众包来探索此前未知的过敏相关因素。

目的

在本研究中,我们旨在使用众包服务收集并检验关于未知过敏相关因素的假设。

方法

通过一系列问卷,我们要求众包参与者提供关于七种不同过敏的相关因素的假设,并使用为每个相关因素计算的比值比来验证候选假设。我们重复这个溯因验证过程以确定一组可靠的假设。

结果

我们获得了两个主要发现:(1)众包显示,13个已知的假设过敏风险中有8个具有统计学意义;(2)在众包服务生成的总共157个假设中,75个假设是具有统计学意义的过敏相关因素,包括8个已知风险和53个此前未知的过敏相关因素。这些发现表明,未来的过敏研究仍有许多主题有待研究。

结论

众包生成了关于过敏相关因素的新假设。在不久的将来,应该进行临床试验以验证本研究中生成的假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26e0/5449648/caa5393fe4d6/resprot_v6i5e83_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验