Star-Lack J, Abel E, Constantin D, Fahrig R, Sun M
Varian Medical Systems, Palo Alto.
Stanford University, Stanford, CA.
Med Phys. 2012 Jun;39(6Part27):3951. doi: 10.1118/1.4736124.
Monte Carlo simulations of DQE(f) can greatly aid in the design of scintillator-based detectors by helping optimize key parameters including scintillator material and thickness, pixel size, surface finish, and septa reflectivity. However, the additional optical transport significantly increases simulation times, necessitating a large number of parallel processors to adequately explore the parameter space. To address this limitation, we have optimized the DQE(f) algorithm, reducing simulation times per design iteration to 10 minutes on a single CPU.
DQE(f) is proportional to the ratio, MTF(f)̂2 /NPS(f). The LSF-MTF simulation uses a slanted line source and is rapidly performed with relatively few gammas launched. However, the conventional NPS simulation for standard radiation exposure levels requires the acquisition of multiple flood fields (nRun), each requiring billions of input gamma photons (nGamma), many of which will scintillate, thereby producing thousands of optical photons (nOpt) per deposited MeV. The resulting execution time is proportional to the product nRun x nGamma x nOpt. In this investigation, we revisit the theoretical derivation of DQE(f), and reveal significant computation time savings through the optimization of nRun, nGamma, and nOpt. Using GEANT4, we determine optimal values for these three variables for a GOS scintillator-amorphous silicon portal imager. Both isotropic and Mie optical scattering processes were modeled. Simulation results were validated against the literature.
We found that, depending on the radiative and optical attenuation properties of the scintillator, the NPS can be accurately computed using values for nGamma below 1000, and values for nOpt below 500/MeV. nRun should remain above 200. Using these parameters, typical computation times for a complete NPS ranged from 2-10 minutes on a single CPU.
The number of launched particles and corresponding execution times for a DQE simulation can be dramatically reduced allowing for accurate computation with modest computer hardware. NIHRO1 CA138426. Several authors work for Varian Medical Systems.
DQE(f) 的蒙特卡罗模拟可通过帮助优化包括闪烁体材料和厚度、像素尺寸、表面光洁度以及隔板反射率等关键参数,极大地助力基于闪烁体的探测器设计。然而,额外的光学传输会显著增加模拟时间,这就需要大量并行处理器来充分探索参数空间。为解决这一限制,我们对 DQE(f) 算法进行了优化,将每次设计迭代的模拟时间在单个 CPU 上缩短至 10 分钟。
DQE(f) 与比率 MTF(f)̂2 /NPS(f) 成正比。LSF - MTF 模拟使用倾斜线源,并且通过发射相对较少的伽马射线就能快速完成。然而,对于标准辐射暴露水平的传统 NPS 模拟需要采集多个泛光场(nRun),每个泛光场都需要数十亿个输入伽马光子(nGamma),其中许多光子会发生闪烁,从而每沉积 1MeV 产生数千个光学光子(nOpt)。由此产生的执行时间与乘积 nRun×nGamma×nOpt 成正比。在本研究中,我们重新审视了 DQE(f) 的理论推导,并通过优化 nRun、nGamma 和 nOpt 揭示了显著的计算时间节省。使用 GEANT4,我们为 GOS 闪烁体 - 非晶硅门静脉成像仪确定了这三个变量的最佳值。对各向同性和米氏光学散射过程都进行了建模。模拟结果与文献进行了验证。
我们发现,根据闪烁体的辐射和光学衰减特性,使用低于 1000 的 nGamma 值和低于 500/MeV 的 nOpt 值可以准确计算 NPS。nRun 应保持在 200 以上。使用这些参数,在单个 CPU 上完整 NPS 的典型计算时间为 2 - 10 分钟。
DQE 模拟中发射粒子的数量和相应的执行时间可以大幅减少,从而使用适度的计算机硬件就能进行准确计算。NIHRO1 CA138426。几位作者就职于瓦里安医疗系统公司。