Suppr超能文献

离子液体中的电荷传输有何不同?高压的影响。

How is charge transport different in ionic liquids? The effect of high pressure.

作者信息

Wojnarowska Z, Thoms E, Blanchard B, Tripathy S N, Goodrich P, Jacquemin J, Knapik-Kowalczuk J, Paluch M

机构信息

Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland.

出版信息

Phys Chem Chem Phys. 2017 May 31;19(21):14141-14147. doi: 10.1039/c6cp08592j.

Abstract

Modern ionic liquids (ILs) are considered green solvents for the future applications due to their inherited advantages and remarkable transport properties. One of the ubiquitous properties of ILs is their intrinsic ionic conductivity. However, understanding of the super-Arrhenius behavior of the ionic conductivity process at elevated pressure still remains elusive and crucial in glass science. In this work, we investigate the ion transport properties of 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide: [Cmim][NTf], 1-butylimidazolium bis[(trifluoromethyl)-sulfonyl]imide: [CHim][NTf] and 1-butylimidazolium hydrogen sulfate: [CHim][HSO] ILs in the supercooled liquid state using dielectric spectroscopy at ambient and high pressure. We present the experimental data in the dynamic window of the conductivity formalism to examine the charge transport properties. The frequency-dependent ionic conductivity data have been analyzed using the time-temperature superposition principle. In the Arrhenius diagram, the thermal evolution of the dc-conductivity reveals similar temperature dependence for both protic and aprotic ILs thus making it difficult to distinguish the ion dynamics. However, our results demonstrate the key role of high pressure that unambiguously separates the charge transport properties of protic ILs from aprotic ones through the apparent activation volume parameter. We also highlight that the activation volume can be employed to assess the information connecting the ability of ionic systems to form H-bond networks and the impact of proton transfer involved in the conduction process.

摘要

现代离子液体(ILs)因其固有的优势和卓越的传输特性,被视为未来应用的绿色溶剂。离子液体普遍具有的特性之一是其固有离子电导率。然而,在玻璃科学领域,对于高压下离子导电过程的超阿伦尼乌斯行为的理解仍然难以捉摸且至关重要。在这项工作中,我们使用介电谱在常压和高压下研究了1-丁基-3-甲基咪唑双[(三氟甲基)磺酰基]亚胺:[Cmim][NTf]、1-丁基咪唑双[(三氟甲基)磺酰基]亚胺:[CHim][NTf]和1-丁基咪唑硫酸氢盐:[CHim][HSO]等离子液体在过冷液态下的离子传输特性。我们在电导率形式理论的动态窗口中展示实验数据,以检验电荷传输特性。频率相关的离子电导率数据已使用时间-温度叠加原理进行分析。在阿伦尼乌斯图中,直流电导率的热演化显示,质子型和非质子型离子液体的温度依赖性相似,因此难以区分离子动力学。然而,我们的结果表明,高压起着关键作用,通过表观活化体积参数明确地将质子型离子液体的电荷传输特性与非质子型离子液体区分开来。我们还强调,活化体积可用于评估连接离子体系形成氢键网络的能力与传导过程中质子转移影响的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验