Suppr超能文献

基于差异生长和肌动球蛋白收缩的前肠和心管形成新假说。

A new hypothesis for foregut and heart tube formation based on differential growth and actomyosin contraction.

作者信息

Hosseini Hadi S, Garcia Kara E, Taber Larry A

机构信息

Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA.

Department of Physics, Washington University, St Louis, MO 63130, USA.

出版信息

Development. 2017 Jul 1;144(13):2381-2391. doi: 10.1242/dev.145193. Epub 2017 May 19.

Abstract

For decades, it was commonly thought that the bilateral heart fields in the early embryo fold directly towards the midline, where they meet and fuse to create the primitive heart tube. Recent studies have challenged this view, however, suggesting that the heart fields fold diagonally. As early foregut and heart tube morphogenesis are intimately related, this finding also raises questions concerning the traditional view of foregut formation. Here, we combine experiments on chick embryos with computational modeling to explore a new hypothesis for the physical mechanisms of heart tube and foregut formation. According to our hypothesis, differential anisotropic growth between mesoderm and endoderm drives diagonal folding. Then, active contraction along the anterior intestinal portal generates tension to elongate the foregut and heart tube. We test this hypothesis using biochemical perturbations of cell proliferation and contractility, as well as computational modeling based on nonlinear elasticity theory including growth and contraction. The present results generally support the view that differential growth and actomyosin contraction drive formation of the foregut and heart tube in the early chick embryo.

摘要

几十年来,人们普遍认为早期胚胎中的双侧心脏区域直接向中线折叠,在中线处相遇并融合形成原始心管。然而,最近的研究对这一观点提出了挑战,表明心脏区域是对角折叠的。由于早期前肠和心管形态发生密切相关,这一发现也对前肠形成的传统观点提出了质疑。在这里,我们将鸡胚实验与计算模型相结合,以探索心管和前肠形成物理机制的新假说。根据我们的假说,中胚层和内胚层之间的差异各向异性生长驱动对角折叠。然后,沿前肠门的主动收缩产生张力,使前肠和心管伸长。我们使用细胞增殖和收缩性的生化扰动以及基于包括生长和收缩在内的非线性弹性理论的计算模型来检验这一假说。目前的结果总体上支持了差异生长和肌动球蛋白收缩驱动早期鸡胚前肠和心管形成的观点。

相似文献

8
Computational model for early cardiac looping.早期心脏环化的计算模型。
Ann Biomed Eng. 2006 Aug;34(8):1655-69. doi: 10.1007/s10439-005-9021-4.

引用本文的文献

6
Heart in a dish - choosing the right in vitro model.器官芯片 - 选择合适的体外模型
Dis Model Mech. 2023 May 1;16(5). doi: 10.1242/dmm.049961. Epub 2023 Feb 24.
10
Programming cell growth into different cluster shapes using diffusible signals.利用可扩散信号将细胞生长编程为不同的簇形状。
PLoS Comput Biol. 2021 Nov 8;17(11):e1009576. doi: 10.1371/journal.pcbi.1009576. eCollection 2021 Nov.

本文引用的文献

4
Morphomechanics: transforming tubes into organs.形态力学:将管道转化为器官
Curr Opin Genet Dev. 2014 Aug;27:7-13. doi: 10.1016/j.gde.2014.03.004. Epub 2014 May 8.
6
Bending of the looping heart: differential growth revisited.环状心脏的弯曲:重新审视差异生长
J Biomech Eng. 2014 Aug;136(8):0810021-08100215. doi: 10.1115/1.4026645.
7
Heart fields: spatial polarity and temporal dynamics.心脏场:空间极性和时间动态。
Anat Rec (Hoboken). 2014 Feb;297(2):175-82. doi: 10.1002/ar.22831. Epub 2013 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验