Suppr超能文献

微生物刺激下不同重金属形态土壤中杂交柳(Salix dasyclados L.)植物萃取效率的模拟。

Modeling of phytoextraction efficiency of microbially stimulated Salix dasyclados L. in the soils with different speciation of heavy metals.

机构信息

a Department of Microbiology , Faculty of Biology and Environmental Protection, Nicolaus Copernicus University , Torun , Poland.

b Department of Environmental Chemistry and Bioanalytics , Faculty of Chemistry, Nicolaus Copernicus University , Torun , Poland.

出版信息

Int J Phytoremediation. 2017 Dec 2;19(12):1150-1164. doi: 10.1080/15226514.2017.1328396.

Abstract

Bioaugmentation of soils with selected microorganisms during phytoextraction can be the key solution for successful bioremediation and should be accurately calculated for different physicochemical soil properties and heavy metal availability to guarantee the universality of this method. Equally important is the development of an accurate prediction tool to manage phytoremediation process. The main objective of this study was to evaluate the role of three metallotolerant siderophore-producing Streptomyces sp. B1-B3 strains in the phytoremediation of heavy metals with the use of S. dasyclados L. growing in four metalliferrous soils as well as modeling the efficiency of this process based on physicochemical and microbiological properties of the soils using artificial neural network (ANN) analysis. The bacterial inoculation of plants significantly stimulated plant biomass and reduced oxidative stress. Moreover, the bacteria affected the speciation of heavy metals and finally their mobility, thereby enhancing the uptake and bioaccumulation of Zn, Cd, and Pb in the biomass. The best capacity for phytoextraction was noted for strain B1, which had the highest siderophore secretion ability. Finally, ANN model permitted to predict efficiency of phytoextraction based on both the physicochemical properties of the soils and the activity of the soil microbiota with high precision.

摘要

在植物提取过程中,用选定的微生物对土壤进行生物增强可以是成功生物修复的关键解决方案,并且应该针对不同的物理化学土壤特性和重金属可用性进行准确计算,以保证该方法的普遍性。同样重要的是开发准确的预测工具来管理植物修复过程。本研究的主要目的是评估三种耐金属产铁载体的链霉菌 B1-B3 菌株在利用 S. dasyclados L. 在四种富金属土壤中进行重金属植物修复中的作用,以及使用人工神经网络 (ANN) 分析基于土壤的物理化学和微生物特性来模拟该过程的效率。细菌接种植物可显著刺激植物生物量并降低氧化应激。此外,细菌会影响重金属的形态,最终影响其迁移性,从而增强 Zn、Cd 和 Pb 在生物量中的吸收和生物积累。菌株 B1 的植物提取能力最强,其产铁载体的能力最高。最后,ANN 模型允许根据土壤的物理化学性质和土壤微生物区系的活性来高精度地预测植物提取的效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验