Pfeffer Martina, Korf Horst-Werner, Wicht Helmut
Dr. Senckenbergische Anatomie II, Fachbereich Medizin, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany; Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
Dr. Senckenbergische Anatomie II, Fachbereich Medizin, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany; Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
Gen Comp Endocrinol. 2018 Mar 1;258:215-221. doi: 10.1016/j.ygcen.2017.05.013. Epub 2017 May 19.
In mammals, the rhythmic secretion of melatonin from the pineal gland is driven by the circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus. The robust nightly peak of melatonin secretion is an output signal of the circadian clock and is supposed to deliver the circadian message to the whole of the organism. Since the circadian system regulates many behavioral and physiological processes, its disruption by external (shift-work, jet-lag) or internal desynchronization (blindness, aging) causes many different health problems. Externally applied melatonin is used in humans as a chronobiotic drug to treat desynchronization and circadian disorders, and the success of these treatments does, at first glance, underline the supposed pivotal role of melatonin in the synchronization of the circadian system. On the other hand, pinealectomy in experimental animals and humans does not abolish their rhythms of rest and activity. Furthermore, mice with deficient melatoninergic systems neither display overt defects in their rhythmic behavior nor do they show obvious signs of disease susceptibility, let alone premature mortality. During the last years, our laboratory has investigated several mouse stains with intact or compromised internal melatonin signaling systems in order to better understand the physiological role of the melatoninergic system. These and other investigations which will be reviewed in the present contribution confirm the synchronizing effect of endogenous melatonin and the melatoninergic system. However, these effects are subtle. Thus melatonin does not appear as the master of internal synchronization, but as one component in a cocktail of synchronizing agents.
在哺乳动物中,松果体分泌褪黑素的节律受下丘脑视交叉上核(SCN)中的生物钟驱动。褪黑素分泌每晚出现的强劲峰值是生物钟的一个输出信号,理应将昼夜节律信息传递给整个机体。由于昼夜节律系统调节许多行为和生理过程,其受到外部因素(轮班工作、时差反应)或内部不同步(失明、衰老)的干扰会引发许多不同的健康问题。外部施用的褪黑素在人类中用作一种时间生物学药物来治疗不同步和昼夜节律紊乱,乍一看,这些治疗的成功凸显了褪黑素在昼夜节律系统同步中理应具有的关键作用。另一方面,实验动物和人类进行松果体切除术后,其休息和活动节律并未消除。此外,褪黑素能系统缺陷的小鼠既未在其节律行为上表现出明显缺陷,也未显示出明显的疾病易感性迹象,更不用说过早死亡了。在过去几年中,我们实验室研究了几种内部褪黑素信号系统完整或受损的小鼠品系,以便更好地理解褪黑素能系统的生理作用。本论文将回顾的这些及其他研究证实了内源性褪黑素和褪黑素能系统的同步作用。然而,这些作用很微妙。因此,褪黑素似乎并非内部同步的主宰,而是同步因子混合物中的一个成分。