Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.
Analyst. 2017 Jun 21;142(12):2191-2198. doi: 10.1039/c7an00499k. Epub 2017 May 24.
This study demonstrates hydrodynamic chromatography of DNA fragments in a microchip. The microchip contains a highly regular array of nanofluidic channels (nanocapillaries) that are essential for resolving DNA in this chromatography mode. The nanocapillaries are self-enclosed robust structures built inside a doped glass layer on silicon using low-resolution photolithography and standard semiconductor processing techniques. Additionally, the unique nanocapillaries feature a cylindrical inner radius of 600 nm maintained over a length scale of 5 cm. The microchip with bare open nanocapillaries is shown to rapidly separate a digest of lambda DNA in free solution (<5 min under the elution pressure of 60 to 120 psi), relying entirely on pressure-driven flows and, in doing so, avoiding the field-induced DNA aggregations encountered in gel-free electrophoresis. The nanocapillaries, despite their relatively short length, are observed to fractionate DNA fragments reasonably well with a minimum resolvable size difference below 5 kbp. In the chromatograms obtained, the number of theoretical plates exceeds 10 plates per m for 3.5 and 21 kbp long DNA fragments. The relative mobility of fragments in relation to their size is found to be in excellent agreement with the simple quadratic model of hydrodynamic chromatography. The model is shown to estimate greater effective hydrodynamic radii than those of respective fragments being unconfined in bulk solution, implying increased drag forces and reduced diffusion coefficients, which is also a noticeable trend among diffusion coefficient estimates derived from the experimentally obtained plate heights. This robust mass-producible microchip can be further developed into a fully integrated bioanalytic microsystem.
本研究展示了在微芯片中 DNA 片段的流体动力学色谱。该微芯片包含高度规则排列的纳米流道(纳米毛细管),这对于在这种色谱模式下解析 DNA 至关重要。纳米毛细管是使用低分辨率光刻和标准半导体处理技术在掺杂玻璃层内构建的自封闭坚固结构。此外,独特的纳米毛细管具有 600nm 的圆柱形内半径,在 5cm 的长度尺度上保持不变。裸纳米毛细管的微芯片被证明能够在自由溶液中快速分离 lambda DNA 的酶切产物(在 60 至 120psi 的洗脱压力下小于 5 分钟),完全依赖于压力驱动的流动,从而避免了在无胶电泳中遇到的场诱导 DNA 聚集。尽管纳米毛细管相对较短,但观察到它们能够很好地分离 DNA 片段,最小可分辨的大小差异低于 5kbp。在所获得的色谱图中,对于 3.5 和 21kbp 长的 DNA 片段,每米的理论板数超过 10 个。发现片段的相对迁移率与其大小之间存在极好的一致性,符合流体动力学色谱的简单二次模型。该模型表明,与片段在散装溶液中不受限制时相比,估计出更大的有效流体动力学半径,这意味着阻力增加和扩散系数降低,这也是从实验获得的板高得出的扩散系数估计中一个明显的趋势。这种稳健的大规模生产的微芯片可以进一步开发成完全集成的生物分析微系统。