Department of Chemistry and Biochemistry, New Mexico State University , Las Cruces, New Mexico 88003, United States.
Anal Chem. 2017 Jun 20;89(12):6424-6431. doi: 10.1021/acs.analchem.7b00188. Epub 2017 Jun 8.
We demonstrate good agreement between the theoretical and experimental collision frequency of individual Pt nanoparticles (NPs) undergoing collisions at a Au ultramicroelectrode (UME) (5 μm radius) using electrocatalytic amplification provided by 15 mM hydrazine in 5 mM phosphate buffer (PB; pH 7) over 100 to 300 s. Dynamic light scattering (DLS) measurements demonstrated that Pt NP aggregation in this solution had the least impact on NP diffusion coefficient and concentration values, which are directly proportional to collision frequency. We show that the smaller, uniform current steps are indicative of NPs of metallic radii in agreement with those determined by transmission electron microscopy (TEM), with corresponding larger NP diffusion coefficient and concentration, in agreement with DLS results. These contribute to the larger NP collision frequency observed experimentally. Using atomic force microscopy (AFM) imaging, we show good agreement between the number of NPs imaged on the UME surface and the number of NP collisions that led to their adsorption, a spherical NP shape with a metallic radius size distribution comparable to that determined by TEM, and a random NP distribution on the UME surface. Through the Pt NP electroactive surface area, we show that all NPs on the UME surface after collision are attached and electrochemically active. Collectively, these results demonstrate for the first time that, within experimental error, every NP collision is successful and occurs through a sticking mechanism. Thus, collision experiments can be used to prepare small NP ensembles on a UME (i.e., UME-NPEs). In electrocatalysis, such UME-NPEs bridge the gap between classical ensemble studies on large platforms and isolated single NP investigations.
我们展示了在 Au 超微电极(UME)(半径 5 μm)上进行的单个 Pt 纳米颗粒(NP)碰撞的理论和实验碰撞频率之间的良好一致性,使用 15 mM 联氨在 5 mM 磷酸盐缓冲液(PB;pH 7)中提供的电催化放大作用,在 100 到 300 秒内。动态光散射(DLS)测量表明,在该溶液中,Pt NP 聚集对 NP 扩散系数和浓度值的影响最小,这些值与碰撞频率直接成正比。我们表明,较小、均匀的电流阶跃指示具有金属半径的 NPs,与透射电子显微镜(TEM)确定的 NPs 一致,具有相应的较大 NP 扩散系数和浓度,与 DLS 结果一致。这些有助于观察到的较大 NP 碰撞频率。使用原子力显微镜(AFM)成像,我们表明,在 UME 表面成像的 NPs 数量与导致其吸附的 NP 碰撞数量之间存在良好的一致性,NP 呈球形,具有与 TEM 确定的金属半径大小分布相当的形状,并且在 UME 表面上呈随机 NP 分布。通过 Pt NP 的有效表面积,我们表明,在碰撞后,UME 表面上的所有 NP 都已附着并具有电化学活性。总的来说,这些结果首次表明,在实验误差范围内,每个 NP 碰撞都是成功的,并且通过附着机制发生。因此,碰撞实验可用于在 UME 上制备小的 NP 集合(即 UME-NPEs)。在电催化中,这种 UME-NPEs 弥合了在大平台上进行经典集合研究和孤立单个 NP 研究之间的差距。