Suppr超能文献

基于p范数奇异值分解的稳健高效肿瘤生物分子聚类

Robust and Efficient Biomolecular Clustering of Tumor Based on ${p}$ -Norm Singular Value Decomposition.

作者信息

Kong Xiang-Zhen, Liu Jin-Xing, Zheng Chun-Hou, Hou Mi-Xiao, Wang Juan

出版信息

IEEE Trans Nanobioscience. 2017 Jul;16(5):341-348. doi: 10.1109/TNB.2017.2705983. Epub 2017 May 18.

Abstract

High dimensionality has become a typical feature of biomolecular data. In this paper, a novel dimension reduction method named p-norm singular value decomposition (PSVD) is proposed to seek the low-rank approximation matrix to the biomolecular data. To enhance the robustness to outliers, the Lp-norm is taken as the error function and the Schatten p-norm is used as the regularization function in the optimization model. To evaluate the performance of PSVD, the Kmeans clustering method is then employed for tumor clustering based on the low-rank approximation matrix. Extensive experiments are carried out on five gene expression data sets including two benchmark data sets and three higher dimensional data sets from the cancer genome atlas. The experimental results demonstrate that the PSVD-based method outperforms many existing methods. Especially, it is experimentally proved that the proposed method is more efficient for processing higher dimensional data with good robustness, stability, and superior time performance.

摘要

高维性已成为生物分子数据的一个典型特征。本文提出了一种名为p范数奇异值分解(PSVD)的新型降维方法,以寻找生物分子数据的低秩近似矩阵。为了增强对异常值的鲁棒性,在优化模型中采用Lp范数作为误差函数,Schatten p范数作为正则化函数。为了评估PSVD的性能,随后基于低秩近似矩阵采用Kmeans聚类方法进行肿瘤聚类。对包括两个基准数据集和来自癌症基因组图谱的三个高维数据集在内的五个基因表达数据集进行了广泛的实验。实验结果表明,基于PSVD的方法优于许多现有方法。特别是,实验证明该方法在处理高维数据时更有效,具有良好的鲁棒性、稳定性和卓越的时间性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验