Suppr超能文献

在随机临床试验中表征高度受益患者。

Characterizing Highly Benefited Patients in Randomized Clinical Trials.

作者信息

Charu Vivek, Rosenberg Paul B, Schneider Lon S, Drye Lea T, Rein Lisa, Shade David, Lyketsos Constantine G, Frangakis Constantine E

出版信息

Int J Biostat. 2017 May 20;13(1):/j/ijb.2017.13.issue-1/ijb-2016-0045/ijb-2016-0045.xml. doi: 10.1515/ijb-2016-0045.

Abstract

Physicians and patients may choose a certain treatment only if it is predicted to have a large effect for the profile of that patient. We consider randomized controlled trials in which the clinical goal is to identify as many patients as possible that can highly benefit from the treatment. This is challenging with large numbers of covariate profiles, first, because the theoretical, exact method is not feasible, and, second, because usual model-based methods typically give incorrect results. Better, more recent methods use a two-stage approach, where a first stage estimates a working model to produce a scalar predictor of the treatment effect for each covariate profile; and a second stage estimates empirically a high-benefit group based on the first-stage predictor. The problem with these methods is that each of the two stages is usually agnostic about the role of the other one in addressing the clinical goal. We propose a method that characterizes highly benefited patients by linking model estimation directly to the particular clinical goal. It is shown that the new method has the following two key properties in comparison with existing approaches: first, the meaning of the solution with regard to the clinical goal is the same, and second, the value of the solution is the best that can be achieved when using the working model as a predictor, even if that model is incorrect. In the Citalopram for Agitation in Alzheimer's Disease (CitAD) randomized controlled trial, the new method identifies substantially larger groups of highly benefited patients, many of whom are missed by the standard method.

摘要

只有当某种治疗方法预计对该患者的病情有显著效果时,医生和患者才会选择它。我们考虑随机对照试验,其临床目标是识别尽可能多的能从该治疗中高度获益的患者。对于大量的协变量概况而言,这具有挑战性,首先是因为理论上的精确方法不可行,其次是因为通常基于模型的方法通常会给出错误的结果。更好的、更新的方法采用两阶段方法,其中第一阶段估计一个工作模型,以针对每个协变量概况生成治疗效果的标量预测器;第二阶段根据第一阶段的预测器凭经验估计一个高获益组。这些方法的问题在于,两个阶段中的每一个通常都不了解另一个在实现临床目标中的作用。我们提出一种通过将模型估计直接与特定临床目标相联系来表征高度获益患者的方法。结果表明,与现有方法相比,新方法具有以下两个关键特性:第一,关于临床目标的解决方案的含义相同;第二,即使工作模型不正确,该解决方案的值也是使用该工作模型作为预测器时所能达到的最佳值。在西酞普兰治疗阿尔茨海默病激越(CitAD)的随机对照试验中,新方法识别出的高度获益患者组要大得多,其中许多患者被标准方法遗漏了。

相似文献

1
Characterizing Highly Benefited Patients in Randomized Clinical Trials.
Int J Biostat. 2017 May 20;13(1):/j/ijb.2017.13.issue-1/ijb-2016-0045/ijb-2016-0045.xml. doi: 10.1515/ijb-2016-0045.
2
Time to Response to Citalopram Treatment for Agitation in Alzheimer Disease.
Am J Geriatr Psychiatry. 2015 Nov;23(11):1127-33. doi: 10.1016/j.jagp.2015.05.006. Epub 2015 May 19.
6
Citalopram for the Treatment of Agitation in Alzheimer Dementia: Genetic Influences.
J Geriatr Psychiatry Neurol. 2016 Mar;29(2):59-64. doi: 10.1177/0891988715601735. Epub 2015 Aug 23.
7
Sedation mediates part of Citalopram's effect on agitation in Alzheimer's disease.
J Psychiatr Res. 2016 Mar;74:17-21. doi: 10.1016/j.jpsychires.2015.12.005. Epub 2015 Dec 12.
8
Advancements in the treatment of agitation in Alzheimer's disease.
Expert Opin Pharmacother. 2015;16(11):1649-56. doi: 10.1517/14656566.2015.1059422.
9
Role of citalopram in the treatment of agitation in Alzheimer's disease.
Neurodegener Dis Manag. 2014;4(5):345-9. doi: 10.2217/nmt.14.35.
10
Changes in QTc interval in the citalopram for agitation in Alzheimer's disease (CitAD) randomized trial.
PLoS One. 2014 Jun 10;9(6):e98426. doi: 10.1371/journal.pone.0098426. eCollection 2014.

本文引用的文献

1
Changes in QTc interval in the citalopram for agitation in Alzheimer's disease (CitAD) randomized trial.
PLoS One. 2014 Jun 10;9(6):e98426. doi: 10.1371/journal.pone.0098426. eCollection 2014.
3
Estimating Individualized Treatment Rules Using Outcome Weighted Learning.
J Am Stat Assoc. 2012 Sep 1;107(449):1106-1118. doi: 10.1080/01621459.2012.695674.
4
Statistical issues and limitations in personalized medicine research with clinical trials.
Int J Biostat. 2012 Jul 20;8(1):18. doi: 10.1515/1557-4679.1423.
5
A robust method for estimating optimal treatment regimes.
Biometrics. 2012 Dec;68(4):1010-8. doi: 10.1111/j.1541-0420.2012.01763.x. Epub 2012 May 2.
6
Citalopram for agitation in Alzheimer's disease: design and methods.
Alzheimers Dement. 2012;8(2):121-30. doi: 10.1016/j.jalz.2011.01.007. Epub 2012 Feb 1.
7
Targeted maximum likelihood based causal inference: Part I.
Int J Biostat. 2010;6(2):Article 2. doi: 10.2202/1557-4679.1211.
8
Analysis of randomized comparative clinical trial data for personalized treatment selections.
Biostatistics. 2011 Apr;12(2):270-82. doi: 10.1093/biostatistics/kxq060. Epub 2010 Sep 28.
10
Conceptualization of agitation: results based on the Cohen-Mansfield Agitation Inventory and the Agitation Behavior Mapping Instrument.
Int Psychogeriatr. 1996;8 Suppl 3:309-15; discussion 351-4. doi: 10.1017/s1041610297003530.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验