Suppr超能文献

3D 定量构效关系和香豆素衍生物作为组织激肽释放酶 7 抑制剂的对接研究。

3D-quantitative structure-activity relationship and docking studies of coumarin derivatives as tissue kallikrein 7 inhibitors.

机构信息

College of Medical Science, China Three Gorges University, Yichang, China.

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China.

出版信息

J Pharm Pharmacol. 2017 Sep;69(9):1136-1144. doi: 10.1111/jphp.12751. Epub 2017 May 23.

Abstract

OBJECTIVES

Kallikrein 7 (KLK7) is a secreted serine protease that plays important roles in skin desquamation and tumour progression, which makes it an attracting drug target. To guide the design of KLK7 inhibitors, a series of coumarin-based inhibitors were used to perform 3D-quantitative structure-activity relationship analysis.

METHODS

3D conformations of 37 inhibitors were generated and used to construct CoMFA and CoMSIA models. Then a complex model between the inhibitors and KLK7 was built with molecular docking.

KEY FINDINGS

With the training set, the CoMFA and CoMSIA models achieved q values of 0.521 and 0.498, and r values of 0.942 and 0.983, respectively. With the testing set, the predicted r values were 0.663 and 0.669, respectively, for CoMFA and CoMSIA. 3D contour maps from these two models identified steric and hydrophobic interactions as the most important molecular features of these inhibitors. Furthermore, molecular docking study was performed to understand the binding modes between these compounds and KLK7, in which the critical steric and hydrophobic interactions between the inhibitors and KLK7 were confirmed.

CONCLUSIONS

Steric and hydrophobic interactions are critical in the efficient binding of KLK7 inhibitors. Our analysis would provide a meaningful guideline for the rational design of novel KLK7 inhibitors.

摘要

目的

激肽释放酶 7(KLK7)是一种分泌型丝氨酸蛋白酶,在皮肤脱屑和肿瘤进展中发挥重要作用,使其成为有吸引力的药物靶点。为了指导 KLK7 抑制剂的设计,使用了一系列香豆素类抑制剂进行了 3D 定量构效关系分析。

方法

生成了 37 种抑制剂的 3D 构象,并用于构建 CoMFA 和 CoMSIA 模型。然后,通过分子对接构建了抑制剂与 KLK7 之间的复合物模型。

主要发现

在训练集中,CoMFA 和 CoMSIA 模型的 q 值分别为 0.521 和 0.498,r 值分别为 0.942 和 0.983。在测试集中,CoMFA 和 CoMSIA 的预测 r 值分别为 0.663 和 0.669。这两个模型的 3D 等高线图确定了立体和疏水性相互作用是这些抑制剂最重要的分子特征。此外,还进行了分子对接研究,以了解这些化合物与 KLK7 之间的结合模式,其中确认了抑制剂与 KLK7 之间的关键立体和疏水性相互作用。

结论

立体和疏水性相互作用是 KLK7 抑制剂有效结合的关键。我们的分析将为 KLK7 抑制剂的合理设计提供有意义的指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验