Suppr超能文献

在昼夜循环中,固体停留时间和碳储存对微藻氮磷回收的影响。

Influence of solids residence time and carbon storage on nitrogen and phosphorus recovery by microalgae across diel cycles.

机构信息

Department of Civil & Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Avenue, Urbana, IL, 61801, USA.

Department of Civil & Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Avenue, Urbana, IL, 61801, USA.

出版信息

Water Res. 2017 Sep 15;121:231-239. doi: 10.1016/j.watres.2017.05.033. Epub 2017 May 18.

Abstract

Microalgal treatment systems could advance nutrient recovery from wastewater by achieving effluent nitrogen (N) and phosphorus (P) levels below the current limit of technology, but their successful implementation requires an understanding of how design decisions influence nutrient uptake over daily (i.e., diel) cycles. This work demonstrates the ability to influence microalgal N:P recovery ratio via solids residence time (SRT) while maintaining complete nutrient removal across day/night cycles through carbon storage and mobilization. Experiments were conducted with two microalgal species, Scenedesmus obliquus and Chlamydomonas reinhardtii, in photobioreactors (PBRs) operated as cyclostats (chemostats subjected to simulated natural light cycles) with retention times of 6-22 days (S. obliquus) and 7-13 days (C. reinhardtii). Nutrient loading and all other factors were fixed across all experiments. Elevated SRTs (>8 days) achieved limiting nutrient concentrations (either N or P) below the detection limit throughout the diel cycle. N:P mass ratio in algal biomass was linearly correlated with SRT, varying from 9.9:1 to 5.0:1 (S. obliquus) and 4.7:1 to 4.3:1 (C. reinhardtii). Carbohydrate content of biomass increased in high irradiance and decreased in low irradiance and darkness across all experiments, whereas lipid dynamics were minimal over 24-h cycles. Across all nutrient-limited cultures, specific (i.e., protein-normalized) dynamic carbohydrate generally decreased with increasing SRT. Nighttime consumption of stored carbohydrate fueled uptake of nutrients, enabling complete nutrient limitation throughout the night. Dynamic carbohydrate consumption for nutrient assimilation was consistent with dark protein synthesis but less than that of heterotrophic growth, underscoring the need for algal process models to decouple growth from nutrient uptake in periods of low/no light. The ability to tailor microalgal N:P uptake ratio and target an optimal energy storage metabolism with traditional engineering process controls (such as SRT) may enable advanced nutrient recovery facilities to target continuous and reliable dual limitation of nitrogen and phosphorus.

摘要

微藻处理系统可以通过实现低于当前技术极限的出水氮(N)和磷(P)水平,来推进废水的养分回收,但为了成功实施,需要了解设计决策如何影响每日(即昼夜)周期内的养分吸收。本工作通过固体停留时间(SRT)展示了影响微藻 N:P 回收比的能力,同时通过碳储存和再利用,在昼夜周期内保持完全的养分去除。实验在光生物反应器(PBR)中用两种微藻(斜生栅藻和莱茵衣藻)进行,PBR 作为恒化器(受模拟自然光周期影响的恒化器)运行,停留时间分别为 6-22 天(斜生栅藻)和 7-13 天(莱茵衣藻)。在所有实验中,养分负荷和所有其他因素都是固定的。较高的 SRT(>8 天)使限制养分浓度(N 或 P)在昼夜周期内低于检测限。藻类生物质中的 N:P 质量比与 SRT 呈线性相关,变化范围为 9.9:1 至 5.0:1(斜生栅藻)和 4.7:1 至 4.3:1(莱茵衣藻)。在所有实验中,生物质的碳水化合物含量在高光强下增加,在低光强和黑暗中减少,而脂质动态在 24 小时周期内最小。在所有养分限制培养物中,特定的(即,蛋白归一化)动态碳水化合物一般随着 SRT 的增加而减少。夜间储存的碳水化合物消耗为养分吸收提供了动力,使整个夜间都能完全限制养分。用于养分同化的动态碳水化合物消耗与暗蛋白合成一致,但低于异养生长,这突显了需要藻类过程模型在低光/无光时期将生长与养分吸收解耦。通过传统工程过程控制(如 SRT)来调整微藻 N:P 吸收比并针对最佳能量储存代谢的能力,可能使先进的养分回收设施能够针对氮和磷的连续和可靠双重限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验