Suppr超能文献

酿酒酵母单倍体细胞乙醇耐受性的体内进化工程引发二倍体化。

In vivo evolutionary engineering for ethanol-tolerance of Saccharomyces cerevisiae haploid cells triggers diploidization.

作者信息

Turanlı-Yıldız Burcu, Benbadis Laurent, Alkım Ceren, Sezgin Tuğba, Akşit Arman, Gökçe Abdülmecit, Öztürk Yavuz, Baykal Ahmet Tarık, Çakar Zeynep Petek, François Jean M

机构信息

Department of Molecular Biology & Genetics, Faculty of Science and Letters, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey; Istanbul Technical University, Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), 34469 Maslak, Istanbul, Turkey.

LISBP, Université de Toulouse, 135 Avenue de Rangueil, F-31077 Toulouse, France.

出版信息

J Biosci Bioeng. 2017 Sep;124(3):309-318. doi: 10.1016/j.jbiosc.2017.04.012. Epub 2017 May 25.

Abstract

Microbial ethanol production is an important alternative energy resource to replace fossil fuels, but at high level, this product is highly toxic, which hampers its efficient production. Towards increasing ethanol-tolerance of Saccharomyces cerevisiae, the so far best industrial ethanol-producer, we evaluated an in vivo evolutionary engineering strategy based on batch selection under both constant (5%, v v) and gradually increasing (5-11.4%, v v) ethanol concentrations. Selection under increasing ethanol levels yielded evolved clones that could tolerate up to 12% (v v) ethanol and had cross-resistance to other stresses. Quite surprisingly, diploidization of the yeast population took place already at 7% (v v) ethanol level during evolutionary engineering, and this event was abolished by the loss of MKT1, a gene previously identified as being implicated in ethanol tolerance (Swinnen et al., Genome Res., 22, 975-984, 2012). Transcriptomic analysis confirmed diploidization of the evolved clones with strong down-regulation in mating process, and in several haploid-specific genes. We selected two clones exhibiting the highest viability on 12% ethanol, and found productivity and titer of ethanol significantly higher than those of the reference strain under aerated fed-batch cultivation conditions. This higher fermentation performance could be related with a higher abundance of glycolytic and ribosomal proteins and with a relatively lower respiratory capacity of the evolved strain, as revealed by a comparative transcriptomic and proteomic analysis between the evolved and the reference strains. Altogether, these results emphasize the efficiency of the in vivo evolutionary engineering strategy for improving ethanol tolerance, and the link between ethanol tolerance and diploidization.

摘要

微生物乙醇生产是替代化石燃料的一种重要的替代能源,但在高浓度下,这种产物具有高毒性,这阻碍了其高效生产。为了提高酿酒酵母(迄今为止最佳的工业乙醇生产菌株)的乙醇耐受性,我们评估了一种基于分批筛选的体内进化工程策略,筛选条件为恒定(5%,v/v)和逐渐增加(5%-11.4%,v/v)的乙醇浓度。在乙醇浓度增加的条件下进行筛选,得到了能够耐受高达12%(v/v)乙醇且对其他胁迫具有交叉抗性的进化克隆。非常令人惊讶的是,在进化工程过程中,酵母群体在乙醇浓度达到7%(v/v)时就发生了二倍体化,而先前鉴定为与乙醇耐受性有关的基因MKT1的缺失消除了这一事件(Swinnen等人,《基因组研究》,22卷,975-984页,2012年)。转录组分析证实了进化克隆的二倍体化,其交配过程以及几个单倍体特异性基因均有强烈下调。我们选择了在12%乙醇条件下活力最高的两个克隆,发现在通气补料分批培养条件下,它们的乙醇生产率和滴度显著高于参考菌株。进化菌株与参考菌株之间的比较转录组和蛋白质组分析表明,这种更高的发酵性能可能与糖酵解和核糖体蛋白的丰度较高以及进化菌株相对较低的呼吸能力有关。总之,这些结果强调了体内进化工程策略在提高乙醇耐受性方面的效率,以及乙醇耐受性与二倍体化之间的联系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验