Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; UCIBIO-REQUIMTE, Faculty of Science and Technology, Nova University of Lisbon, Lisbon, Portugal.
UMR1095 Genetics, Diversity and Ecophysiology of Cereals (GDEC), Institut National de la Recherche Agronomique (INRA), Clermont-Ferrand, France.
J Proteomics. 2017 Oct 3;169:136-142. doi: 10.1016/j.jprot.2017.05.019. Epub 2017 May 25.
Gluten-forming storage proteins play a major role in the viscoelastic properties of wheat dough through the formation of a continuous proteinaceous network. The high-molecular-weight glutenin subunits represent a functionally important subgroup of gluten proteins by promoting the formation of large glutenin polymers through interchain disulphide bonds between glutenin subunits. Here, we present evidences that y-type glutenin subunits encoded at the Glu-B1 locus are prone to proteolytic processing at the C-terminus tail, leading to the loss of the unique cysteine residue present at the C-terminal domain. Results obtained by intact mass measurement and immunochemistry for each proteoform indicate that the proteolytic cleavage appears to occur at the carboxyl-side of two conserved asparagine residues at the C-terminal domain start. Hence, we hypothesize that the responsible enzymes are a class of cysteine endopeptidases - asparaginyl endopeptidases - described in post-translational processing of other storage proteins in wheat. Biological significance The reported study provides new insights into wheat storage protein maturation. In view of the importance of gluten proteins on dough viscoelastic properties and end-product quality, the reported C-terminal domain cleavage of high-molecular-weight glutenin subunits is of particular interest, since this domain possesses a unique conserved cysteine residue which is assumed to participate in gluten polymerization.
形成型贮藏蛋白通过形成连续的蛋白质网络,在小麦面团的黏弹性中起着主要作用。高分子量麦谷蛋白亚基通过亚基间的二硫键促进大的麦谷蛋白聚合物的形成,是谷蛋白的一个功能上重要的亚群。在这里,我们提供的证据表明,Glu-B1 位点编码的 y 型谷蛋白亚基易于在 C 末端尾部发生蛋白水解加工,导致在 C 末端结构域中丢失存在的独特半胱氨酸残基。每个蛋白水解物的完整质量测量和免疫化学结果表明,蛋白水解似乎发生在 C 末端结构域起始处两个保守天冬酰胺残基的羧基侧。因此,我们假设负责的酶是一类半胱氨酸内肽酶-天冬酰胺内肽酶-在小麦中其他贮藏蛋白的翻译后加工中被描述。生物学意义 该报道的研究为小麦贮藏蛋白成熟提供了新的见解。鉴于谷蛋白对面团黏弹性和最终产品质量的重要性,报道的高分子量麦谷蛋白亚基 C 末端结构域的切割特别有趣,因为该结构域具有独特保守的半胱氨酸残基,假定参与谷蛋白聚合。