Meng Yiwei, Yang Zhou, Cheng Bin, Nie Xinyu, Li Shannan, Yin Huijia, Xu Ping, Yang Chunyu
State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China.
State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
J Bacteriol. 2017 Jul 25;199(16). doi: 10.1128/JB.00302-17. Print 2017 Aug 15.
Two NhaD-type antiporters, NhaD1 and NhaD2, from the halotolerant and alkaliphilic sp. strain Y2, exhibit different physiological functions in regard to Na and Li resistance, although they share high sequence identity. In the present study, the truncation of an additional 4 C-terminal residues from NhaD2 or an exchange of 39 N-terminal residues between these proteins resulted in the complete loss of antiporter activity. Interestingly, combining 39 N-terminal residues and 7 C-terminal residues of NhaD2 (N39D2-C7) partially recovered the activity for Na and Li expulsion, as well as complementary growth following exposure to 300 mM Na and 100 mM Li stress. The recovered activity of chimera N39D2-C7 indicated that the N and C termini are structurally dependent on each other and function synergistically. Furthermore, fluorescence resonance energy transfer (FRET) analysis suggested that the N and C termini are relatively close in proximity which may account for their synergistic function in ion translocation. In the N-terminal region of N39D2-C7, the replacement of Glu with Pro abolished the recovered complementary and transport activities. In addition, this amino acid substitution in NhaD2 resulted in a drastically decreased complementation ability in KNabc (level identical to that of NhaD1), as well as decreased activity and an altered pH profile. Limited information on NhaD antiporters supports speculation that these antiporters are important for resistance to high salinity and alkalinity. Moreover, only a few functional residues have been identified in NhaD antiporters, and there is limited literature on the molecular mechanisms of NhaD antiporter activity. The altered antiporter abilities of chimeras and mutants in this study implicate the functions of the N and C termini, especially Glu, in pH regulation and ion translocation, and, most importantly, the essential roles of this negatively charged residue in maintaining the physiological function of NhaD2. These findings further our understanding of the molecular mechanism of NhaD antiporters for ion transport.
来自耐盐嗜碱菌sp.菌株Y2的两种NhaD型反向转运蛋白NhaD1和NhaD2,尽管它们具有高度的序列同一性,但在抗钠和抗锂方面表现出不同的生理功能。在本研究中,从NhaD2中额外截去4个C末端残基或在这些蛋白之间交换39个N末端残基,导致反向转运蛋白活性完全丧失。有趣的是,将NhaD2的39个N末端残基和7个C末端残基组合(N39D2-C7)部分恢复了钠和锂排出活性,以及在暴露于300 mM钠和100 mM锂胁迫后的互补生长能力。嵌合体N39D2-C7恢复的活性表明N末端和C末端在结构上相互依赖且协同发挥作用。此外,荧光共振能量转移(FRET)分析表明N末端和C末端在空间上相对靠近,这可能解释了它们在离子转运中的协同功能。在N39D2-C7的N末端区域,用脯氨酸取代谷氨酸消除了恢复的互补和转运活性。此外,NhaD2中的这种氨基酸取代导致在KNabc中的互补能力大幅下降(水平与NhaD1相同),以及活性降低和pH谱改变。关于NhaD反向转运蛋白的信息有限,这支持了这些反向转运蛋白对高盐度和高碱度抗性很重要的推测。此外,在NhaD反向转运蛋白中仅鉴定出少数功能残基,关于NhaD反向转运蛋白活性分子机制的文献也很有限。本研究中嵌合体和突变体反向转运能力的改变暗示了N末端和C末端的功能,特别是谷氨酸在pH调节和离子转运中的功能,最重要的是,这个带负电荷的残基在维持NhaD2生理功能中的关键作用。这些发现进一步加深了我们对NhaD反向转运蛋白离子转运分子机制的理解。