Kleinberger Gernot, Brendel Matthias, Mracsko Eva, Wefers Benedikt, Groeneweg Linda, Xiang Xianyuan, Focke Carola, Deußing Maximilian, Suárez-Calvet Marc, Mazaheri Fargol, Parhizkar Samira, Pettkus Nadine, Wurst Wolfgang, Feederle Regina, Bartenstein Peter, Mueggler Thomas, Arzberger Thomas, Knuesel Irene, Rominger Axel, Haass Christian
Biomedical Center (BMC), Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
EMBO J. 2017 Jul 3;36(13):1837-1853. doi: 10.15252/embj.201796516. Epub 2017 May 30.
Genetic variants in the triggering receptor expressed on myeloid cells 2 (TREM2) increase the risk for several neurodegenerative diseases including Alzheimer's disease and frontotemporal dementia (FTD). Homozygous TREM2 missense mutations, such as p.T66M, lead to the FTD-like syndrome, but how they cause pathology is unknown. Using CRISPR/Cas9 genome editing, we generated a knock-in mouse model for the disease-associated Trem2 p.T66M mutation. Consistent with a loss-of-function mutation, we observe an intracellular accumulation of immature mutant Trem2 and reduced generation of soluble Trem2 similar to patients with the homozygous p.T66M mutation. Trem2 p.T66M knock-in mice show delayed resolution of inflammation upon lipopolysaccharide stimulation and cultured macrophages display significantly reduced phagocytic activity. Immunohistochemistry together with TSPO small animal positron emission tomography (μPET) demonstrates an age-dependent reduction in microglial activity. Surprisingly, perfusion magnetic resonance imaging and FDG-μPET imaging reveal a significant reduction in cerebral blood flow and brain glucose metabolism. Thus, we demonstrate that a TREM2 loss-of-function mutation causes brain-wide metabolic alterations pointing toward a possible function of microglia in regulating brain glucose metabolism.
髓系细胞触发受体2(TREM2)中的基因变异会增加包括阿尔茨海默病和额颞叶痴呆(FTD)在内的多种神经退行性疾病的风险。纯合的TREM2错义突变,如p.T66M,会导致类似FTD的综合征,但它们如何引起病理变化尚不清楚。利用CRISPR/Cas9基因组编辑技术,我们构建了一种与疾病相关的Trem2 p.T66M突变的基因敲入小鼠模型。与功能丧失性突变一致,我们观察到未成熟突变型Trem2在细胞内积累,且可溶性Trem2的生成减少,这与纯合p.T66M突变患者的情况相似。Trem2 p.T66M基因敲入小鼠在脂多糖刺激后炎症消退延迟,培养的巨噬细胞吞噬活性显著降低。免疫组织化学结合TSPO小动物正电子发射断层扫描(μPET)显示小胶质细胞活性随年龄增长而降低。令人惊讶的是,灌注磁共振成像和FDG-μPET成像显示脑血流量和脑葡萄糖代谢显著降低。因此,我们证明TREM2功能丧失性突变会导致全脑代谢改变,提示小胶质细胞在调节脑葡萄糖代谢中可能具有一定作用。