Center for Spintronics, Post-Si Semiconductor Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea.
Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea.
Nat Commun. 2017 Jun 1;8:15722. doi: 10.1038/ncomms15722.
Semiconductor spintronics is an alternative to conventional electronics that offers devices with high performance, low power and multiple functionality. Although a large number of devices with mesoscopic dimensions have been successfully demonstrated at low temperatures for decades, room-temperature operation still needs to go further. Here we study spin injection in single-crystal gallium nitride nanowires and report robust spin accumulation at room temperature with enhanced spin injection polarization of 9%. A large Overhauser coupling between the electron spin accumulation and the lattice nuclei is observed. Finally, our single-crystal gallium nitride samples have a trigonal cross-section defined by the (001), () and () planes. Using the Hanle effect, we show that the spin accumulation is significantly different for injection across the (001) and () (or ()) planes. This provides a technique for increasing room temperature spin injection in mesoscopic systems.
半导体自旋电子学是一种替代传统电子学的方法,它提供了具有高性能、低功耗和多功能的器件。尽管数十年来已经成功地在低温下展示了大量具有介观尺寸的器件,但室温操作仍需要进一步发展。在这里,我们研究了单晶氮化镓纳米线中的自旋注入,并报告了在室温下具有增强的自旋注入极化度为 9%的稳健自旋积累。观察到电子自旋积累和晶格原子核之间的大 Overhauser 耦合。最后,我们的单晶氮化镓样品具有由 (001)、() 和 () 平面定义的三角横截面。利用 Hanle 效应,我们表明,自旋积累在穿过 (001) 和 ()(或 ()) 平面的注入过程中存在显著差异。这为增加介观系统中的室温自旋注入提供了一种技术。