Suppr超能文献

通过细胞表面工程实现生物正交介导的细胞核酸转染

Bio-Orthogonal Mediated Nucleic Acid Transfection of Cells via Cell Surface Engineering.

作者信息

O'Brien Paul J, Elahipanah Sina, Rogozhnikov Dmitry, Yousaf Muhammad N

机构信息

Department of Chemistry and Biology, York University, Toronto, Canada, M3J 1P3.

OrganoLinX Inc., Toronto, Canada.

出版信息

ACS Cent Sci. 2017 May 24;3(5):489-500. doi: 10.1021/acscentsci.7b00132. Epub 2017 May 15.

Abstract

The efficient delivery of foreign nucleic acids (transfection) into cells is a critical tool for fundamental biomedical research and a pillar of several biotechnology industries. There are currently three main strategies for transfection including reagent, instrument, and viral based methods. Each technology has significantly advanced cell transfection; however, reagent based methods have captured the majority of the transfection market due to their relatively low cost and ease of use. This general method relies on the efficient packaging of a reagent with nucleic acids to form a stable complex that is subsequently associated and delivered to cells via nonspecific electrostatic targeting. Reagent transfection methods generally use various polyamine cationic type molecules to condense with negatively charged nucleic acids into a highly positively charged complex, which is subsequently delivered to negatively charged cells in culture for association, internalization, release, and expression. Although this appears to be a straightforward procedure, there are several major issues including toxicity, low efficiency, sorting of viable transfected from nontransfected cells, and limited scope of transfectable cell types. Herein, we report a new strategy (SnapFect) for nucleic acid transfection to cells that does not rely on electrostatic interactions but instead uses an integrated approach combining bio-orthogonal liposome fusion, click chemistry, and cell surface engineering. We show that a target cell population is rapidly and efficiently engineered to present a bio-orthogonal functional group on its cell surface through nanoparticle liposome delivery and fusion. A complementary bio-orthogonal nucleic acid complex is then formed and delivered to which chemoselective click chemistry induced transfection occurs to the primed cell. This new strategy requires minimal time, steps, and reagents and leads to superior transfection results for a broad range of cell types. Moreover the transfection is efficient with high cell viability and does not require a postsorting step to separate transfected from nontransfected cells in the cell population. We also show for the first time a precision transfection strategy where a single cell type in a coculture is target transfected via bio-orthogonal click chemistry.

摘要

将外源核酸导入细胞(转染)是基础生物医学研究的关键工具,也是多个生物技术产业的支柱。目前主要有三种转染策略,包括基于试剂、仪器和病毒的方法。每种技术都极大地推动了细胞转染的发展;然而,基于试剂的方法因其成本相对较低且使用方便,占据了大部分转染市场。这种常规方法依赖于试剂与核酸的有效包装,形成稳定的复合物,随后通过非特异性静电靶向作用与细胞结合并递送至细胞。试剂转染方法通常使用各种多胺阳离子型分子与带负电荷的核酸凝聚成高度带正电荷的复合物,随后将其递送至培养物中带负电荷的细胞,以实现结合、内化、释放和表达。尽管这似乎是一个简单的过程,但存在几个主要问题,包括毒性、效率低、从未转染细胞中筛选出存活的转染细胞以及可转染细胞类型范围有限。在此,我们报告了一种用于细胞核酸转染的新策略(SnapFect),该策略不依赖静电相互作用,而是采用一种结合生物正交脂质体融合、点击化学和细胞表面工程的综合方法。我们表明,通过纳米颗粒脂质体递送和融合,可快速有效地对目标细胞群体进行工程改造,使其在细胞表面呈现生物正交官能团。然后形成并递送互补的生物正交核酸复合物,对预处理的细胞进行化学选择性点击化学诱导转染。这种新策略所需的时间、步骤和试剂最少,对多种细胞类型都能产生优异的转染结果。此外,转染效率高,细胞活力强,且不需要在细胞群体中进行后分选步骤来分离转染细胞和未转染细胞。我们还首次展示了一种精确转染策略,即通过生物正交点击化学对共培养物中的单一细胞类型进行靶向转染。

相似文献

1
Bio-Orthogonal Mediated Nucleic Acid Transfection of Cells via Cell Surface Engineering.
ACS Cent Sci. 2017 May 24;3(5):489-500. doi: 10.1021/acscentsci.7b00132. Epub 2017 May 15.
2
Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
Astrobiology. 2022 Jun;22(S1):S112-S164. doi: 10.1089/AST.2021.0113. Epub 2022 May 19.
3
Rewiring Gram-Negative Bacteria Cell Surfaces with Bio-Orthogonal Chemistry via Liposome Fusion.
Bioconjug Chem. 2016 Apr 20;27(4):1082-9. doi: 10.1021/acs.bioconjchem.6b00073. Epub 2016 Mar 28.
4
A multifunctional envelope-type nanodevice for use in nanomedicine: concept and applications.
Acc Chem Res. 2012 Jul 17;45(7):1113-21. doi: 10.1021/ar200254s. Epub 2012 Feb 10.
6
Spheroid and Tissue Assembly via Click Chemistry in Microfluidic Flow.
Bioconjug Chem. 2015 Sep 16;26(9):1939-49. doi: 10.1021/acs.bioconjchem.5b00376. Epub 2015 Aug 12.
7
Complex Size and Surface Charge Determine Nucleic Acid Transfer by Fusogenic Liposomes.
Int J Mol Sci. 2020 Mar 24;21(6):2244. doi: 10.3390/ijms21062244.
8
A biomimetic lipid library for gene delivery through thiol-yne click chemistry.
Biomaterials. 2012 Nov;33(32):8160-6. doi: 10.1016/j.biomaterials.2012.07.044. Epub 2012 Aug 16.
9
Optimizing nonviral-mediated transfection of human intervertebral disc chondrocytes.
Spine J. 2008 Sep-Oct;8(5):796-803. doi: 10.1016/j.spinee.2007.05.010. Epub 2007 Jul 19.
10
Recent advances in nonviral vectors for gene delivery.
Acc Chem Res. 2012 Jul 17;45(7):971-9. doi: 10.1021/ar200151m. Epub 2011 Aug 26.

引用本文的文献

1
Clicking in harmony: exploring the bio-orthogonal overlap in click chemistry.
RSC Adv. 2024 Mar 1;14(11):7383-7413. doi: 10.1039/d4ra00494a. eCollection 2024 Feb 29.
2
Advancing cell surface modification in mammalian cells with synthetic molecules.
Chem Sci. 2023 Nov 10;14(46):13325-13345. doi: 10.1039/d3sc04597h. eCollection 2023 Nov 29.
3
Nanoparticles and bioorthogonal chemistry joining forces for improved biomedical applications.
Nanoscale Adv. 2021 Jan 21;3(5):1261-1292. doi: 10.1039/d0na00873g. eCollection 2021 Mar 9.
4
Delivery Systems for Nucleic Acids and Proteins: Barriers, Cell Capture Pathways and Nanocarriers.
Pharmaceutics. 2021 Mar 22;13(3):428. doi: 10.3390/pharmaceutics13030428.
5
Improved Nucleic Acid Therapy with Advanced Nanoscale Biotechnology.
Mol Ther Nucleic Acids. 2020 Mar 6;19:581-601. doi: 10.1016/j.omtn.2019.12.004. Epub 2019 Dec 17.
6
Advances on Non-Genetic Cell Membrane Engineering for Biomedical Applications.
Polymers (Basel). 2019 Dec 5;11(12):2017. doi: 10.3390/polym11122017.
7
Transfection by cationic gemini lipids and surfactants.
Medchemcomm. 2018 Jul 17;9(9):1404-1425. doi: 10.1039/c8md00249e. eCollection 2018 Sep 1.
8
Deciphering the Functional Composition of Fusogenic Liposomes.
Int J Mol Sci. 2018 Jan 24;19(2):346. doi: 10.3390/ijms19020346.
9
"Clicking" Gene Therapeutics: A Successful Union of Chemistry and Biomedicine for New Solutions.
Mol Pharm. 2018 Aug 6;15(8):2892-2899. doi: 10.1021/acs.molpharmaceut.7b00765. Epub 2018 Feb 26.

本文引用的文献

2
Generation of a Scaffold-Free Three-Dimensional Liver Tissue via a Rapid Cell-to-Cell Click Assembly Process.
Bioconjug Chem. 2016 Sep 21;27(9):1991-8. doi: 10.1021/acs.bioconjchem.6b00187. Epub 2016 Aug 10.
3
Rewiring Gram-Negative Bacteria Cell Surfaces with Bio-Orthogonal Chemistry via Liposome Fusion.
Bioconjug Chem. 2016 Apr 20;27(4):1082-9. doi: 10.1021/acs.bioconjchem.6b00073. Epub 2016 Mar 28.
4
The future of cancer treatment: immunomodulation, CARs and combination immunotherapy.
Nat Rev Clin Oncol. 2016 May;13(5):273-90. doi: 10.1038/nrclinonc.2016.25. Epub 2016 Mar 15.
5
Structure-activity correlation in transfection promoted by pyridinium cationic lipids.
Org Biomol Chem. 2016 Mar 21;14(11):3080-90. doi: 10.1039/c6ob00041j. Epub 2016 Feb 19.
6
Gene therapy returns to centre stage.
Nature. 2015 Oct 15;526(7573):351-60. doi: 10.1038/nature15818.
7
Chemically tunable mucin chimeras assembled on living cells.
Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):12574-9. doi: 10.1073/pnas.1516127112. Epub 2015 Sep 29.
8
Spheroid and Tissue Assembly via Click Chemistry in Microfluidic Flow.
Bioconjug Chem. 2015 Sep 16;26(9):1939-49. doi: 10.1021/acs.bioconjchem.5b00376. Epub 2015 Aug 12.
9
A Dual Receptor and Reporter for Multi-Modal Cell Surface Engineering.
ACS Chem Biol. 2015 Oct 16;10(10):2219-26. doi: 10.1021/acschembio.5b00137. Epub 2015 Jul 23.
10
Nanomaterials for theranostics: recent advances and future challenges.
Chem Rev. 2015 Jan 14;115(1):327-94. doi: 10.1021/cr300213b. Epub 2014 Nov 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验