Suppr超能文献

国家尺度洪水灾害制图方法:以希腊为例-保护和适应政策方法。

A national scale flood hazard mapping methodology: The case of Greece - Protection and adaptation policy approaches.

机构信息

Hellenic Agricultural Organization (H.A.O.-DEMETER), National Agricultural Research Foundation (N.AG.RE.F.), Institute for Olive Tree, Subtropical Crops and Viticulture, Water Recourses, Irrigation & Environmental Geoinformatics Lab., Agrokipio, 73100 Chania, Greece.

School of Environmental Engineering, Technical University of Crete, Polytechneioupolis, 73100 Chania, Greece.

出版信息

Sci Total Environ. 2017 Dec 1;601-602:441-452. doi: 10.1016/j.scitotenv.2017.05.197. Epub 2017 May 31.

Abstract

The present work introduces a national scale flood hazard assessment methodology, using multi-criteria analysis and artificial neural networks (ANNs) techniques in a GIS environment. The proposed methodology was applied in Greece, where flash floods are a relatively frequent phenomenon and it has become more intense over the last decades, causing significant damages in rural and urban sectors. In order the most prone flooding areas to be identified, seven factor-maps (that are directly related to flood generation) were combined in a GIS environment. These factor-maps are: a) the Flow accumulation (F), b) the Land use (L), c) the Altitude (A), b) the Slope (S), e) the soil Erodibility (E), f) the Rainfall intensity (R), and g) the available water Capacity (C). The name to the proposed method is "FLASERC". The flood hazard for each one of these factors is classified into five categories: Very low, low, moderate, high, and very high. The above factors are combined and processed using the appropriate ANN algorithm tool. For the ANN training process spatial distribution of historical flooded points in Greece within the five different flood hazard categories of the aforementioned seven factor-maps were combined. In this way, the overall flood hazard map for Greece was determined. The final results are verified using additional historical flood events that have occurred in Greece over the last 100years. In addition, an overview of flood protection measures and adaptation policy approaches were proposed for agricultural and urban areas located at very high flood hazard areas.

摘要

本研究介绍了一种基于多准则分析和人工神经网络(ANNs)技术的国家尺度洪水灾害评估方法,并将其应用于希腊。希腊是一个经常发生突发洪水灾害的国家,而且在过去几十年中,这种灾害变得更加频繁和剧烈,对农村和城市地区造成了重大损失。为了识别最易发生洪水的地区,我们在 GIS 环境中将七个与洪水生成直接相关的因子图(因子图 a:汇流累积;因子图 b:土地利用;因子图 c:海拔;因子图 d:坡度;因子图 e:土壤可蚀性;因子图 f:降雨强度;因子图 g:可用水容量)进行了组合。我们将这种方法命名为“FLASERC”。对于每一个因子,洪水灾害被分为五个类别:极低、低、中、高和极高。上述因子结合并通过适当的 ANN 算法工具进行处理。对于 ANN 训练过程,我们将希腊历史上发生的洪水点在上述七个因子图的五个不同洪水灾害类别中的空间分布进行了组合。通过这种方式,我们确定了希腊的整体洪水灾害图。最后,我们使用过去 100 年中在希腊发生的额外历史洪水事件对最终结果进行了验证。此外,我们还针对位于极高洪水灾害地区的农业和城市地区提出了洪水防护措施和适应政策方法的概述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验