Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; Centro de Biotecnología y Genómica de Plantas (CBGP), Campus de Montegancedo, Autovía M40, km38, 28223, Pozuelo de Alarcón, Madrid, Spain.
REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
Food Res Int. 2017 Jul;97:149-161. doi: 10.1016/j.foodres.2017.03.050. Epub 2017 Apr 1.
Understanding grape berry development and the metabolism of different classes of compounds responsible for traits like berry's color is imperative to control and improve quality aspects of grapes. A colorimetric, biochemical and molecular characterization allowed the comprehensive description of the pigment-related characteristics of nine berry skin color somatic variants, belonging to four different varieties. Although the observed berry skin color variability was not fully explained by MybA locus, the phenolic profiles allowed inferring about specific interferences among the biosynthetic pathways. Data were consistent concerning that grapes showing cyanidin-3-O-glucoside as the major anthocyanin and flavonols with two substituent groups in the lateral B-ring are generally originated by a white ancestor. After retro-mutation, these grapes seem to keep the dysfunction on flavonoid hydroxylases enzymes, which negatively affect the synthesis of both flavonols and anthocyanins with three substituent groups in the lateral B-ring. Overall, the obtained results indicate that the color differences observed between somatic variants are not solely the result of the total amount of compounds synthesized, but rather reflect a different dynamics of the phenolic pathway among the different color variants of the same variety.
Gallic acid (PubChem CID: 370); Caftaric acid (PubChem CID: 6,440,397); Catechin (PubChem CID: 73,160); Epigallocatechin gallate (PubChem CID: 65,064); Quercetin-3-O-galactoside (PubChem CID: 5,281,643); Quercetin-3-O-glucoside (PubChem CID: 25,203,368); Malvidin-3-O-glucoside (PubChem CID: 443,652); Peonidin-3-O-p-coumaroylglucoside (PubChem CID: 44,256,849); Malvidin-3-O-p-coumaroylglucoside (PubChem CID: 44,256,988); Resveratrol-3-O-glucoside (PubChem CID: 25,579,167).
了解葡萄浆果发育和不同类别的化合物代谢,这些化合物与浆果颜色等特征有关,对于控制和改善葡萄品质至关重要。通过比色法、生化和分子特征描述,全面描述了属于四个不同品种的九个浆果果皮颜色体细胞变异体的色素相关特征。尽管观察到的浆果果皮颜色变异性不能完全用 MybA 基因座来解释,但酚类物质的分布允许推断出生物合成途径之间的具体干扰。关于显示出以矢车菊素-3-O-葡萄糖苷为主要花色苷和黄酮醇具有侧 B 环上两个取代基的葡萄通常来自白色祖先的数据是一致的。在逆行突变后,这些葡萄似乎保持了黄酮类化合物羟化酶的功能障碍,这对侧 B 环上具有三个取代基的黄酮醇和花色苷的合成产生负面影响。总的来说,获得的结果表明,体细胞变异体之间观察到的颜色差异不仅是合成化合物总量的结果,而是反映了同一品种不同颜色变异体之间酚类途径的不同动态。
没食子酸(PubChem CID:370);咖啡酸(PubChem CID:6,440,397);儿茶素(PubChem CID:73,160);表没食子儿茶素没食子酸酯(PubChem CID:65,064);槲皮素-3-O-半乳糖苷(PubChem CID:5,281,643);槲皮素-3-O-葡萄糖苷(PubChem CID:25,203,368);矢车菊素-3-O-葡萄糖苷(PubChem CID:443,652);芍药素-3-O-对香豆酰基葡萄糖苷(PubChem CID:44,256,849);矢车菊素-3-O-对香豆酰基葡萄糖苷(PubChem CID:44,256,988);白藜芦醇-3-O-葡萄糖苷(PubChem CID:25,579,167)。