Suppr超能文献

微管稳定化的机制由土瓜酮 AJ 实现。

Mechanism of microtubule stabilization by taccalonolide AJ.

机构信息

State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.

Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu 610041, China.

出版信息

Nat Commun. 2017 Jun 6;8:15787. doi: 10.1038/ncomms15787.

Abstract

As a major component of the cytoskeleton, microtubules consist of αβ-tubulin heterodimers and have been recognized as attractive targets for cancer chemotherapy. Microtubule-stabilizing agents (MSAs) promote polymerization of tubulin and stabilize the polymer, preventing depolymerization. The molecular mechanisms by which MSAs stabilize microtubules remain elusive. Here we report a 2.05 Å crystal structure of tubulin complexed with taccalonolide AJ, a newly identified taxane-site MSA. Taccalonolide AJ covalently binds to β-tubulin D226. On AJ binding, the M-loop undergoes a conformational shift to facilitate tubulin polymerization. In this tubulin-AJ complex, the E-site of tubulin is occupied by GTP rather than GDP. Biochemical analyses confirm that AJ inhibits the hydrolysis of the E-site GTP. Thus, we propose that the β-tubulin E-site is locked into a GTP-preferred status by AJ binding. Our results provide experimental evidence for the connection between MSA binding and tubulin nucleotide state, and will help design new MSAs to overcome taxane resistance.

摘要

作为细胞骨架的主要组成部分,微管由αβ-微管蛋白异二聚体组成,已被认为是癌症化疗的有吸引力的靶点。微管稳定剂(MSA)促进微管蛋白的聚合并稳定聚合物,防止解聚。MSA 稳定微管的分子机制仍不清楚。在这里,我们报告了一个 2.05Å 的微管与新鉴定的紫杉烷结合位点 MSA 塔卡隆内酯 AJ 的复合物晶体结构。塔卡隆内酯 AJ 与β-微管蛋白 D226 共价结合。在 AJ 结合时,M 环发生构象移位,促进微管蛋白聚合。在这个微管-AJ 复合物中,微管的 E 位被 GTP 占据,而不是 GDP。生化分析证实 AJ 抑制 E 位 GTP 的水解。因此,我们提出 AJ 结合将β-微管蛋白的 E 位锁定在 GTP 优先状态。我们的结果为 MSA 结合与微管核苷酸状态之间的联系提供了实验证据,并将有助于设计新的 MSA 来克服紫杉烷耐药性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e135/5467209/7296e83c9fd6/ncomms15787-f1.jpg

相似文献

1
Mechanism of microtubule stabilization by taccalonolide AJ.
Nat Commun. 2017 Jun 6;8:15787. doi: 10.1038/ncomms15787.
2
Taccalonolide binding to tubulin imparts microtubule stability and potent in vivo activity.
Cancer Res. 2013 Nov 15;73(22):6780-92. doi: 10.1158/0008-5472.CAN-13-1346. Epub 2013 Sep 18.
3
The determinants that govern microtubule assembly from the atomic structure of GTP-tubulin.
J Mol Biol. 2011 Sep 9;412(1):35-42. doi: 10.1016/j.jmb.2011.07.029. Epub 2011 Jul 23.
5
High-resolution X-ray structure of three microtubule-stabilizing agents in complex with tubulin provide a rationale for drug design.
Biochem Biophys Res Commun. 2021 Jan 1;534:330-336. doi: 10.1016/j.bbrc.2020.11.082. Epub 2020 Nov 30.
7
Unravelling the covalent binding of zampanolide and taccalonolide AJ to a minimalist representation of a human microtubule.
J Comput Aided Mol Des. 2019 Jul;33(7):627-644. doi: 10.1007/s10822-019-00208-w. Epub 2019 May 31.
8
Molecular mechanism of action of microtubule-stabilizing anticancer agents.
Science. 2013 Feb 1;339(6119):587-90. doi: 10.1126/science.1230582. Epub 2013 Jan 3.
10
Concerning the chemical nature of tubulin subunits that cap and stabilize microtubules.
Biochemistry. 2003 Feb 25;42(7):2122-6. doi: 10.1021/bi027010s.

引用本文的文献

1
Pharmacokinetic and Biodistribution Studies of [F]-Taccalonolide: A Covalent Microtubule Stabilizer with Antitumor Efficacy.
ACS Med Chem Lett. 2025 Jul 16;16(8):1569-1574. doi: 10.1021/acsmedchemlett.5c00208. eCollection 2025 Aug 14.
2
Design and synthesis of novel 4-aryl-2-benzoyl-imidazoles as colchicine binding site inhibitors.
Eur J Med Chem. 2025 Nov 15;298:118021. doi: 10.1016/j.ejmech.2025.118021. Epub 2025 Aug 4.
3
Crosstalk between Microtubule Stabilizing Agents and Prostate Cancer.
Cancers (Basel). 2023 Jun 23;15(13):3308. doi: 10.3390/cancers15133308.
6
Taccalonolides: Structure, semi-synthesis, and biological activity.
Front Pharmacol. 2022 Aug 11;13:968061. doi: 10.3389/fphar.2022.968061. eCollection 2022.
8
Resistance to anti-tubulin agents: From vinca alkaloids to epothilones.
Cancer Drug Resist. 2019 Mar 19;2(1):82-106. doi: 10.20517/cdr.2019.06. eCollection 2019.
9
Multistage pH-responsive codelivery liposomal platform for synergistic cancer therapy.
J Nanobiotechnology. 2022 Apr 2;20(1):177. doi: 10.1186/s12951-022-01383-z.

本文引用的文献

1
Pironetin Binds Covalently to αCys316 and Perturbs a Major Loop and Helix of α-Tubulin to Inhibit Microtubule Formation.
J Mol Biol. 2016 Jul 31;428(15):2981-8. doi: 10.1016/j.jmb.2016.06.023. Epub 2016 Jul 6.
2
Pironetin reacts covalently with cysteine-316 of α-tubulin to destabilize microtubule.
Nat Commun. 2016 Jun 30;7:12103. doi: 10.1038/ncomms12103.
5
Taccalonolide microtubule stabilizers.
Bioorg Med Chem. 2014 Sep 15;22(18):5091-6. doi: 10.1016/j.bmc.2014.01.012. Epub 2014 Jan 15.
7
Taccalonolide binding to tubulin imparts microtubule stability and potent in vivo activity.
Cancer Res. 2013 Nov 15;73(22):6780-92. doi: 10.1158/0008-5472.CAN-13-1346. Epub 2013 Sep 18.
8
Structural basis of tubulin tyrosination by tubulin tyrosine ligase.
J Cell Biol. 2013 Feb 4;200(3):259-70. doi: 10.1083/jcb.201211017. Epub 2013 Jan 28.
9
Molecular mechanism of action of microtubule-stabilizing anticancer agents.
Science. 2013 Feb 1;339(6119):587-90. doi: 10.1126/science.1230582. Epub 2013 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验