Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany.
Nanoscale. 2017 Jun 22;9(24):8314-8320. doi: 10.1039/c7nr01215b.
We use molecular dynamics simulations to investigate interfacial thermal transport between an ethanol suspension containing gold atomic clusters and a gold surface, using both realistic and simplified molecular models of nanoparticles. The interfacial thermal conductance was determined via a thermal relaxation method for a variety of nanoparticle-nanoparticle and nanoparticle-surface interaction strengths. The Kapitza resistance is found to increase due to the presence of nanoparticles in the vicinity of the solid-liquid interface. The heat flow from the solid to the nanoparticles is separated from its counterpart from the solid to the liquid to discriminate their respective contribution to the total heat current. A per-vibrational-mode analysis highlights a shift of major heat carriers from low frequencies towards higher frequencies due to the coupling of the internal nanoparticle dynamics to the gold surface, in addition to stronger particle-surface interactions. Finally, we demonstrate that the increase of the Kapitza resistance significantly shifts the nanofluid/solid surface explosive boiling temperature to higher temperatures compared to pure ethanol.
我们使用分子动力学模拟研究了含金原子团簇的乙醇悬浮液与金表面之间的界面热传输,使用了真实和简化的纳米颗粒分子模型。通过热弛豫法确定了各种纳米颗粒-纳米颗粒和纳米颗粒-表面相互作用强度的界面热导。由于固体-液体界面附近存在纳米颗粒,Kapitza 电阻会增加。从固体到纳米颗粒的热流与从固体到液体的热流分离,以区分它们对总热流的各自贡献。每个振动模式的分析都强调了主要热载体由于纳米颗粒内部动力学与金表面的耦合,从低频向高频的转移,除了更强的颗粒-表面相互作用之外。最后,我们证明 Kapitza 电阻的增加会显著将纳米流体/固体表面的爆炸沸腾温度提高到比纯乙醇更高的温度。